Advertisement

Resource Optimisation Problems in Cognitive Radio Networks

Chapter
  • 10 Downloads

Abstract

Even with the implementation of the ‘best’ spectrum sensing techniques, the amount of spectrum resource that could be made available for the cognitive radio networks may still be grossly insufficient. Besides, there are other important resources such as transmission power and data rates that must be considered alongside the spectrum resource for a meaningful implementation of the cognitive radio networks. Just like the spectrum, these other resources for the cognitive radio networks are non-ubiquitous and may be insufficient to meet the demands and expectations of cognitive radio networks if not properly managed. It is therefore imperative to investigate the best approach to allocate, administer and/or manage these non-ubiquitous resources of the cognitive radio networks. This chapter discusses the resource allocation or administration problems of cognitive radio networks and establishes them as optimisation problems. A general representation of resource optimisation problems in cognitive radio networks is then provided. Some classical examples of resource allocation problems and problem formulations in cognitive radio networks are presented. Thereafter, the unique characteristics of the resource optimisation problems in cognitive radio networks that make them different from the resource problems of other communication networks are discussed.

Keywords

Resource scarcity Resource allocation Resource management Resource allocation problems and solutions Optimisation Cognitive radio networks 

References

  1. 1.
    Z. Mao, X. Wang, Efficient optimal and suboptimal radio resource allocation in OFDMA system. IEEE Trans. Wirel. Commun. 7(2), 440–445 (2008)CrossRefGoogle Scholar
  2. 2.
    C. Turgu, C. Toker, A low complexity resource allocation algorithm for OFDMA systems, in Proceedings of the 15th IEEE Workshop on SSP (2009), pp. 689–692Google Scholar
  3. 3.
    C. Shi, Y. Wang, P. Zhang, Joint spectrum sensing and resource allocation for multi-band cognitive radio systems with heterogeneous services, in Proceedings of the IEEE GLOBECOM (2012), pp. 1180–1185Google Scholar
  4. 4.
    X. Yu, T. Lv, P. Chang, Y. Li, Enhanced efficient optimal and suboptimal radio resource allocation in OFDMA system, in Proceedings of the 6th International Conference on WiCOM (2010), pp. 1–4Google Scholar
  5. 5.
    S. Kim, B.G. Lee, D. Park, Energy-per-bit minimized radio resource allocation in heterogeneous networks. IEEE Trans. Wirel. Commun. 13(4), 1862–1873 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Bashar, Z. Ding, Admission control and resource allocation in a heterogeneous OFDMA wireless network. IEEE Trans. Wirel. Commun. 8(8), 4200–4210 (2009)CrossRefGoogle Scholar
  7. 7.
    T. Villa, R. Merz, R. Knopp, Dynamic resource allocation in heterogeneous networks, in Proceedings of the IEEE GLOBECOM (2013), pp. 1915–1920Google Scholar
  8. 8.
    E.B. Rodrigues, F. Casadevall, Rate adaptive resource allocation with fairness control for OFDMA networks, in Proceedings of the 18th EW Conference (2012), pp. 1–8Google Scholar
  9. 9.
    M. Fang, G. Song, Adaptive resource allocation schemes for OFDMA systems with proportional rate constraint, in Proceedings of the Symposium on CIICT (2012), pp. 106–110Google Scholar
  10. 10.
    S. Cicalo, V. Tralli, Adaptive resource allocation with proportional rate constraints for uplink SC-FDMA systems. IEEE Commun. Lett. 18(8), 1419–1422 (2014)CrossRefGoogle Scholar
  11. 11.
    H. Liming, X. Lin, Margin adaptive resource allocation with long-term rate fairness considered in downlink OFDMA systems, in Proceedings of the IEEE EUROCON (2009), pp. 1919–1923Google Scholar
  12. 12.
    N. Ul Hassan, M. Assaad, Low complexity margin adaptive resource allocation in downlink MIMO-OFDMA system. IEEE Trans. Wirel. Commun. 8(7), 3365–3371 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Pischella, J.-C. Belfiore, Distributed margin adaptive resource allocation in MIMO OFDMA networks. IEEE Trans. Commun. 58(8), 2371–2380 (2010)CrossRefGoogle Scholar
  14. 14.
    B.S. Awoyemi, B.T. Maharaj, A.S. Alfa, QoS provisioning in heterogeneous cognitive radio networks through dynamic resource allocation, in Proceedings of the IEEE AFRICON (2015), pp. 1–6Google Scholar
  15. 15.
    B.S. Awoyemi, B.T.J. Maharaj, A.S. Alfa, Solving resource allocation problems in cognitive radio networks: a survey. EURASIP J. Wirel. Commun. Netw. 2016(1), 176 (2016). https://doi.org/10.1186/s13638-016-0673-6
  16. 16.
    J.-C. Liang, J.-C. Chen, Resource allocation in cognitive radio relay networks. IEEE J. Sel. Areas Commun. 31(3), 476–488 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Tachwali, F. Basma, H. Refai, Cognitive radio architecture for rapidly deployable heterogeneous wireless networks. IEEE Trans. Consum. Electron. 56(3), 1426–1432 (2010)CrossRefGoogle Scholar
  18. 18.
    B. Awoyemi, B. Maharaj, A. Alfa, Optimal resource allocation solutions for heterogeneous cognitive radio networks. Digital Commun. Netw. 3(2), 129–139 (2017). http://www.sciencedirect.com/science/article/pii/S2352864816301043 CrossRefGoogle Scholar
  19. 19.
    W.L. Winston, M. Venkataramanan, Introduction to Mathematical Programming, 4th ed. Pacific Grove, London; Thompson Brooks, Cole (2003)Google Scholar
  20. 20.
    P. Pedregal, Introduction to Optimization. Texts in Applied Mathematics (Springer, New York, 2004)Google Scholar
  21. 21.
    K. Edwin, H. Stanislaw, An Introduction to Optimization, 4th ed. Wiley Series in Discrete Mathematics and Optimization (John Wiley and Sons, Inc., West Sussex, 2013)Google Scholar
  22. 22.
    S. Boyd, L. Vandenberghe, Convex Optimization. Berichte über verteilte messysteme (Cambridge University Press, Cambridge, 2004). https://books.google.co.za/books?id=mYm0bLd3fcoC
  23. 23.
    A.S. Alfa, B.T. Maharaj, S. Lall, S. Pal, Mixed-integer programming based techniques for resource allocation in underlay cognitive radio networks: a survey. J. Commun. Netw. 18(5), 744–761 (2016)CrossRefGoogle Scholar
  24. 24.
    M.G. Adian, H. Aghaeinia, Y. Norouzi, Optimal resource allocation for opportunistic spectrum access in heterogeneous MIMO cognitive radio networks. Trans. Emerg. Telecommun. Technol. (2014). http://doi.dx.org/10.1002/ett.2796
  25. 25.
    M.G. Adian, H. Aghaeinia, Optimal resource allocation in heterogeneous MIMO cognitive radio networks. Wirel. Pers. Commun. 76(1), 23–39 (2014). http://doi.dx.org/10.1007/s11277-013-1486-0 CrossRefGoogle Scholar
  26. 26.
    M. Adian, H. Aghaeinia, Optimal resource allocation for opportunistic spectrum access in multiple-input multiple-output-orthogonal frequency division multiplexing based cooperative cognitive radio networks. IET Signal Process. 7(7), 549–557 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Adian, H. Aghaeinia, Optimal and sub-optimal resource allocation in multiple-input multiple-output-orthogonal frequency division multiplexing-based multi-relay cooperative cognitive radio networks. IET Commun. 8(5), 646–657 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Wang, M. Ge, C. Wang, Efficient resource allocation for cognitive radio networks with cooperative relays. IEEE J. Sel. Areas Commun. 31(11), 2432–2441 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Wang, Z.-H. Zhou, M. Ge, C. Wang, Resource allocation for heterogeneous cognitive radio networks with imperfect spectrum sensing. IEEE J. Sel. Areas Commun. 31(3), 464–475 (2013)CrossRefGoogle Scholar
  30. 30.
    M. Ge, S. Wang, On the resource allocation for multi-relay cognitive radio systems, in Proceedings of the IEEE ICC (2014), pp. 1591–1595Google Scholar
  31. 31.
    R. Xie, F. Yu, H. Ji, Dynamic resource allocation for heterogeneous services in cognitive radio networks with imperfect channel sensing. IEEE Trans. Veh. Technol. 61(2), 770–780 (2012)CrossRefGoogle Scholar
  32. 32.
    R. Xie, F. Yu, H. Ji, Y. Li, Energy-efficient resource allocation for heterogeneous cognitive radio networks with femtocells. IEEE Trans. Wirel. Commun. 11(11), 3910–3920 (2012)CrossRefGoogle Scholar
  33. 33.
    R. Xie, F. Yu, H. Ji, Spectrum sharing and resource allocation for energy-efficient heterogeneous cognitive radio networks with femtocells, in Proceedings of the IEEE ICC (2012), pp. 1661–1665Google Scholar
  34. 34.
    Y. Rahulamathavan, S. Lambotharan, C. Toker, A. Gershman, Suboptimal recursive optimisation framework for adaptive resource allocation in spectrum-sharing networks. IET Signal Process. 6(1), 27–33 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Y. Rahulamathavan, K. Cumanan, L. Musavian, S. Lambotharan, Optimal subcarrier and bit allocation techniques for cognitive radio networks using integer linear programming, in Proceedings of the 15th IEEE Workshop on SSP (2009), pp. 293–296Google Scholar
  36. 36.
    Y. Rahulamathavan, K. Cumanan, S. Lambotharan, Optimal resource allocation techniques for MIMO-OFDMA based cognitive radio networks using integer linear programming, in Proceedings of the 11th IEEE International Workshop on SPAWC (2010), pp. 1–5Google Scholar
  37. 37.
    Y. Rahulamathavan, K. Cumanan, R. Krishna, S. Lambotharan, Adaptive subcarrier and bit allocation techniques for MIMO-OFDMA based uplink cognitive radio networks, in Proceedings of the 1st International Workshop on UKIWCWS (2009), pp. 1–5Google Scholar
  38. 38.
    A. Zafar, M.-S. Alouini, Y. Chen, R. Radaydeh, New resource allocation scheme for cognitive relay networks with opportunistic access, in Proceedings of the IEEE ICC (2012), pp. 5603–5607Google Scholar
  39. 39.
    L.E. Doyle, Essentials of Cognitive Radio. The Cambridge Wireless Essentials Series (Cambridge University Press, New York, 2009)CrossRefGoogle Scholar
  40. 40.
    R.W. Floyd, Nondeterministic algorithms. J. ACM 14(4), 636–644 (1967). http://doi.acm.org/10.1145/321420.321422 CrossRefGoogle Scholar
  41. 41.
    O. Tripp, E. Koskinen, M. Sagiv, Turning nondeterminism into parallelism. SIGPLAN Not. 48(10), 589–604 (2013). http://doi.acm.org/10.1145/2544173.2509533 CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

Authors and Affiliations

  1. 1.University of PretoriaPretoriaSouth Africa

Personalised recommendations