Advertisement

Perspectives on Cognitive Radio Networks

Chapter
  • 9 Downloads

Abstract

This chapter describes the foundational and modern architectural descriptions, depictions and designs of the cognitive radio networks. The chapter establishes that, in contrast to earlier descriptions, the more accurate, practicable and realistic designs of the cognitive radio networks must consider it as a heterogeneous system and not a homogeneous one. The various classifications and considerations of heterogeneity that are most applicable to the cognitive radio networks are presented and discussed. The chapter concludes with the new and exciting technologies that would be helpful in driving the full realisation of modern cognitive radio networks.

Keywords

Cognitive radio networks Cognitive radio network architecture Heterogeneous systems Next-generation networks Emerging communication technologies 

References

  1. 1.
    K.-C. Chen, Y.-J. Peng, N. Prasad, Y.-C. Liang, S. Sun, Cognitive radio network architecture: part I—general structure, in Proceedings of the Second International Conference on UIMC. ACM, New York (2008), pp. 114–119. http://doi.acm.org/10.1145/1352793.1352817
  2. 2.
    K.-C. Chen, Y.-J. Peng, N. Prasad, Y.-C. Liang, S. Sun, Cognitive radio network architecture: part II—trusted network layer structure, in Proceedings of the Second International Conference on UIMC. ACM, New York (2008), pp. 120–124. http://doi.acm.org/10.1145/1352793.1352818
  3. 3.
    C. Xin, X. Cao, A cognitive radio network architecture without control channel, in Proceedings of the IEEE GLOBECOM (2009), pp. 1–6Google Scholar
  4. 4.
    D. Xu, Q. Zhang, Y. Liu, Y. Xu, P. Zhang, An architecture for cognitive radio networks with cognition, self-organization and reconfiguration capabilities, in Proceedings of the IEEE VTC (Fall) (2012), pp. 1–5Google Scholar
  5. 5.
    A. Amanna, J. Reed, Survey of cognitive radio architectures, in Proceedings of the IEEE SoutheastCon (2010), pp. 292–297Google Scholar
  6. 6.
    M. Monemi, M. Rasti, E. Hossain, Characterizing feasible interference region for underlay cognitive radio networks, in Proceedings of the IEEE ICC (2015), pp. 7603–7608Google Scholar
  7. 7.
    B.S. Awoyemi, B.T. Maharaj, A.S. Alfa, Resource allocation for heterogeneous cognitive radio networks, in Proceedings of the IEEE WCNC (2015), pp. 1759–1763Google Scholar
  8. 8.
    W. Guo, X. Huang, Maximizing throughput for overlaid cognitive radio networks, in Proceedings of the IEEE MILCOM (2009), pp. 1–7Google Scholar
  9. 9.
    W.-L. Chin, J.-M. Lee, Spectrum sensing scheme for overlay cognitive radio networks. IET Electron. Lett. 51(19), 1552–1554 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Senthuran, A. Anpalagan, O. Das, Throughput analysis of opportunistic access strategies in hybrid underlay overlay cognitive radio networks. IEEE Trans. Wirel. Commun. 11(6), 2024–2035 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Lai, E. Dutkiewicz, R.P. Liu, R. Vesilo, Comparison of cooperative spectrum sensing strategies in distributed cognitive radio networks, in Proceedings of the IEEE GLOBECOM (2012), pp. 1513–1518Google Scholar
  12. 12.
    M. Nabil, W. El-Sayed, M. Elnainay, A cooperative spectrum sensing scheme based on task assignment algorithm for cognitive radio networks, in Proceedings of the International Conference on WCMC (2014), pp. 151–156Google Scholar
  13. 13.
    H. Xu, B. Li, Efficient resource allocation with flexible channel cooperation in OFDMA cognitive radio networks, in Proceedings of the IEEE INFOCOM (2010), pp. 1–9Google Scholar
  14. 14.
    H. Xu, B. Li, Resource allocation with flexible channel cooperation in cognitive radio networks. IEEE Trans. Mobile Comput. 12(5), 957–970 (2013)CrossRefGoogle Scholar
  15. 15.
    M.H. Hassan, M. Hossain, Cooperative beamforming for cognitive radio systems with asynchronous interference to primary user. IEEE Trans. Wirel. Commun. 12(11), 5468–5479 (2013)CrossRefGoogle Scholar
  16. 16.
    B.S. Awoyemi, B.T. Maharaj, A.S. Alfa, Resource allocation in heterogeneous cooperative cognitive radio networks. Int. J. Commun. Syst. 30(11), e3247 (2017). https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3247
  17. 17.
    S. Landstrom, A. Furuskar, K. Johansson, L. Falconetti, F. Kronestedt, Heterogeneous networks (HetNets)—an approach to increasing cellular capacity and coverage, in Proceedings of the 15th International Symposium on WPMC (2012), pp. 108–112Google Scholar
  18. 18.
    D. Lopez-Perez, I. Guvenc, G. de la Roche, M. Kountouris, T.Q.S. Quek, J. Zhang, Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Trans. Wirel. Commun. 18(3), 22–30 (2011)CrossRefGoogle Scholar
  19. 19.
    S. Wang, Z.-H. Zhou, M. Ge, C. Wang, Resource allocation for heterogeneous cognitive radio networks with imperfect spectrum sensing. IEEE J. Sel. Areas Commun. 31(3), 464–475 (2013)CrossRefGoogle Scholar
  20. 20.
    R. Xie, F. Yu, H. Ji, Dynamic resource allocation for heterogeneous services in cognitive radio networks with imperfect channel sensing. IEEE Trans. Veh. Technol. 61(2), 770–780 (2012)CrossRefGoogle Scholar
  21. 21.
    B.S. Awoyemi, B.T. Maharaj, A.S. Alfa, QoS provisioning in heterogeneous cognitive radio networks through dynamic resource allocation, in Proceedings of the IEEE AFRICON (2015), pp. 1–6Google Scholar
  22. 22.
    M. Kaplan, F. Buzluca, A dynamic spectrum decision scheme for heterogeneous cognitive radio networks, in Proceedings of the 24th International Symposium on ISCIS (2009), pp. 697–702Google Scholar
  23. 23.
    B. Awoyemi, B. Maharaj, A. Alfa, Optimal resource allocation solutions for heterogeneous cognitive radio networks. Digital Commun. Netw. 3(2), 129–139 (2017). http://www.sciencedirect.com/science/article/pii/S2352864816301043 CrossRefGoogle Scholar
  24. 24.
    S. Wang, M. Ge, C. Wang, Efficient resource allocation for cognitive radio networks with cooperative relays. IEEE J. Sel. Areas Commun. 31(11), 2432–2441 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Alshamrani, X. Shen, L.-L. Xie, QoS provisioning for heterogeneous services in cooperative cognitive radio networks. IEEE J. Sel. Areas Commun. 29(4), 819–830 (2011)CrossRefGoogle Scholar
  26. 26.
    C. Shi, Y. Wang, P. Zhang, Joint spectrum sensing and resource allocation for multi-band cognitive radio systems with heterogeneous services, in Proceedings of the IEEE GLOBECOM (2012), pp. 1180–1185Google Scholar
  27. 27.
    M. Ma, D.H.K. Tsang, Impact of channel heterogeneity on spectrum sharing in cognitive radio networks, in Proceedings of the IEEE ICC (2008), pp. 2377–2382Google Scholar
  28. 28.
    V. Bhandari, N.H. Vaidya, Heterogeneous multi-channel wireless networks: routing and link layer protocols. SIGMOBILE Mobile Comput. Commun. Rev. 12(1), 43–45 (2008). http://doi.acm.org/10.1145/1374512.1374526 CrossRefGoogle Scholar
  29. 29.
    B. Awoyemi, T. Walingo, F. Takawira, Predictive relay-selection cooperative diversity in land mobile satellite systems. Int. J. Satellite Commun. Netw. 34(2), 277–294 (2016).  https://doi.org/10.1002/sat.1118 CrossRefGoogle Scholar
  30. 30.
    A. Afana, E. Erdogan, S. Ikki, Quadrature spatial modulation for cooperative MIMO 5G wireless networks, in 2016 IEEE Globecom Workshops (GC Wkshps) (2016), pp. 1–5Google Scholar
  31. 31.
    E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)CrossRefGoogle Scholar
  32. 32.
    G. Liu, X. Hou, J. Jin, F. Wang, Q. Wang, Y. Hao, Y. Huang, X. Wang, X. Xiao, A. Deng, 3D-MIMO with massive antennas paves the way to 5G enhanced mobile broadband: from system design to field trials. IEEE J. Sel. Areas Commun. 35(6), 1222–1233 (2017)CrossRefGoogle Scholar
  33. 33.
    F.W. Vook, A. Ghosh, T.A. Thomas, MIMO and beamforming solutions for 5G technology, in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (2014), pp. 1–4Google Scholar
  34. 34.
    D. Wubben, P. Rost, J.S. Bartelt, M. Lalam, V. Savin, M. Gorgoglione, A. Dekorsy, G. Fettweis, Benefits and impact of cloud computing on 5G signal processing: flexible centralization through cloud-RAN. IEEE Signal Process. Mag. 31(6), 35–44 (2014)CrossRefGoogle Scholar
  35. 35.
    A. Falchetti, C. Azurdia-Meza, S. Cespedes, Vehicular cloud computing in the dawn of 5G, in 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON) (2015), pp. 301–305Google Scholar
  36. 36.
    M. Tao, K. Ota, M. Dong, Foud: integrating fog and cloud for 5G-enabled V2G networks. IEEE Netw. 31(2), 8–13 (2017)CrossRefGoogle Scholar
  37. 37.
    L. Lei, D. Yuan, C. K. Ho, S. Sun, Power and channel allocation for non-orthogonal multiple access in 5G systems: tractability and computation. IEEE Trans. Wirel. Commun. 15(12), 8580–8594 (2016)CrossRefGoogle Scholar
  38. 38.
    Z. Ding, M. Peng, H.V. Poor, Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015)CrossRefGoogle Scholar
  39. 39.
    X. Liu, Y. Liu, X. Wang, H. Lin, Highly efficient 3d resource allocation techniques in 5G for NOMA enabled massive MIMO and relaying systems. IEEE J. Sel. Areas Commun. 35(12), 2785–2797 (2017)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

Authors and Affiliations

  1. 1.University of PretoriaPretoriaSouth Africa

Personalised recommendations