Skip to main content

Perspectives on Cognitive Radio Networks

  • Chapter
  • First Online:
Developments in Cognitive Radio Networks

Abstract

This chapter describes the foundational and modern architectural descriptions, depictions and designs of the cognitive radio networks. The chapter establishes that, in contrast to earlier descriptions, the more accurate, practicable and realistic designs of the cognitive radio networks must consider it as a heterogeneous system and not a homogeneous one. The various classifications and considerations of heterogeneity that are most applicable to the cognitive radio networks are presented and discussed. The chapter concludes with the new and exciting technologies that would be helpful in driving the full realisation of modern cognitive radio networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.-C. Chen, Y.-J. Peng, N. Prasad, Y.-C. Liang, S. Sun, Cognitive radio network architecture: part I—general structure, in Proceedings of the Second International Conference on UIMC. ACM, New York (2008), pp. 114–119. http://doi.acm.org/10.1145/1352793.1352817

  2. K.-C. Chen, Y.-J. Peng, N. Prasad, Y.-C. Liang, S. Sun, Cognitive radio network architecture: part II—trusted network layer structure, in Proceedings of the Second International Conference on UIMC. ACM, New York (2008), pp. 120–124. http://doi.acm.org/10.1145/1352793.1352818

  3. C. Xin, X. Cao, A cognitive radio network architecture without control channel, in Proceedings of the IEEE GLOBECOM (2009), pp. 1–6

    Google Scholar 

  4. D. Xu, Q. Zhang, Y. Liu, Y. Xu, P. Zhang, An architecture for cognitive radio networks with cognition, self-organization and reconfiguration capabilities, in Proceedings of the IEEE VTC (Fall) (2012), pp. 1–5

    Google Scholar 

  5. A. Amanna, J. Reed, Survey of cognitive radio architectures, in Proceedings of the IEEE SoutheastCon (2010), pp. 292–297

    Google Scholar 

  6. M. Monemi, M. Rasti, E. Hossain, Characterizing feasible interference region for underlay cognitive radio networks, in Proceedings of the IEEE ICC (2015), pp. 7603–7608

    Google Scholar 

  7. B.S. Awoyemi, B.T. Maharaj, A.S. Alfa, Resource allocation for heterogeneous cognitive radio networks, in Proceedings of the IEEE WCNC (2015), pp. 1759–1763

    Google Scholar 

  8. W. Guo, X. Huang, Maximizing throughput for overlaid cognitive radio networks, in Proceedings of the IEEE MILCOM (2009), pp. 1–7

    Google Scholar 

  9. W.-L. Chin, J.-M. Lee, Spectrum sensing scheme for overlay cognitive radio networks. IET Electron. Lett. 51(19), 1552–1554 (2015)

    Article  Google Scholar 

  10. S. Senthuran, A. Anpalagan, O. Das, Throughput analysis of opportunistic access strategies in hybrid underlay overlay cognitive radio networks. IEEE Trans. Wirel. Commun. 11(6), 2024–2035 (2012)

    Article  Google Scholar 

  11. J. Lai, E. Dutkiewicz, R.P. Liu, R. Vesilo, Comparison of cooperative spectrum sensing strategies in distributed cognitive radio networks, in Proceedings of the IEEE GLOBECOM (2012), pp. 1513–1518

    Google Scholar 

  12. M. Nabil, W. El-Sayed, M. Elnainay, A cooperative spectrum sensing scheme based on task assignment algorithm for cognitive radio networks, in Proceedings of the International Conference on WCMC (2014), pp. 151–156

    Google Scholar 

  13. H. Xu, B. Li, Efficient resource allocation with flexible channel cooperation in OFDMA cognitive radio networks, in Proceedings of the IEEE INFOCOM (2010), pp. 1–9

    Google Scholar 

  14. H. Xu, B. Li, Resource allocation with flexible channel cooperation in cognitive radio networks. IEEE Trans. Mobile Comput. 12(5), 957–970 (2013)

    Article  Google Scholar 

  15. M.H. Hassan, M. Hossain, Cooperative beamforming for cognitive radio systems with asynchronous interference to primary user. IEEE Trans. Wirel. Commun. 12(11), 5468–5479 (2013)

    Article  Google Scholar 

  16. B.S. Awoyemi, B.T. Maharaj, A.S. Alfa, Resource allocation in heterogeneous cooperative cognitive radio networks. Int. J. Commun. Syst. 30(11), e3247 (2017). https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3247

  17. S. Landstrom, A. Furuskar, K. Johansson, L. Falconetti, F. Kronestedt, Heterogeneous networks (HetNets)—an approach to increasing cellular capacity and coverage, in Proceedings of the 15th International Symposium on WPMC (2012), pp. 108–112

    Google Scholar 

  18. D. Lopez-Perez, I. Guvenc, G. de la Roche, M. Kountouris, T.Q.S. Quek, J. Zhang, Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Trans. Wirel. Commun. 18(3), 22–30 (2011)

    Article  Google Scholar 

  19. S. Wang, Z.-H. Zhou, M. Ge, C. Wang, Resource allocation for heterogeneous cognitive radio networks with imperfect spectrum sensing. IEEE J. Sel. Areas Commun. 31(3), 464–475 (2013)

    Article  Google Scholar 

  20. R. Xie, F. Yu, H. Ji, Dynamic resource allocation for heterogeneous services in cognitive radio networks with imperfect channel sensing. IEEE Trans. Veh. Technol. 61(2), 770–780 (2012)

    Article  Google Scholar 

  21. B.S. Awoyemi, B.T. Maharaj, A.S. Alfa, QoS provisioning in heterogeneous cognitive radio networks through dynamic resource allocation, in Proceedings of the IEEE AFRICON (2015), pp. 1–6

    Google Scholar 

  22. M. Kaplan, F. Buzluca, A dynamic spectrum decision scheme for heterogeneous cognitive radio networks, in Proceedings of the 24th International Symposium on ISCIS (2009), pp. 697–702

    Google Scholar 

  23. B. Awoyemi, B. Maharaj, A. Alfa, Optimal resource allocation solutions for heterogeneous cognitive radio networks. Digital Commun. Netw. 3(2), 129–139 (2017). http://www.sciencedirect.com/science/article/pii/S2352864816301043

    Article  Google Scholar 

  24. S. Wang, M. Ge, C. Wang, Efficient resource allocation for cognitive radio networks with cooperative relays. IEEE J. Sel. Areas Commun. 31(11), 2432–2441 (2013)

    Article  Google Scholar 

  25. A. Alshamrani, X. Shen, L.-L. Xie, QoS provisioning for heterogeneous services in cooperative cognitive radio networks. IEEE J. Sel. Areas Commun. 29(4), 819–830 (2011)

    Article  Google Scholar 

  26. C. Shi, Y. Wang, P. Zhang, Joint spectrum sensing and resource allocation for multi-band cognitive radio systems with heterogeneous services, in Proceedings of the IEEE GLOBECOM (2012), pp. 1180–1185

    Google Scholar 

  27. M. Ma, D.H.K. Tsang, Impact of channel heterogeneity on spectrum sharing in cognitive radio networks, in Proceedings of the IEEE ICC (2008), pp. 2377–2382

    Google Scholar 

  28. V. Bhandari, N.H. Vaidya, Heterogeneous multi-channel wireless networks: routing and link layer protocols. SIGMOBILE Mobile Comput. Commun. Rev. 12(1), 43–45 (2008). http://doi.acm.org/10.1145/1374512.1374526

    Article  Google Scholar 

  29. B. Awoyemi, T. Walingo, F. Takawira, Predictive relay-selection cooperative diversity in land mobile satellite systems. Int. J. Satellite Commun. Netw. 34(2), 277–294 (2016). https://doi.org/10.1002/sat.1118

    Article  Google Scholar 

  30. A. Afana, E. Erdogan, S. Ikki, Quadrature spatial modulation for cooperative MIMO 5G wireless networks, in 2016 IEEE Globecom Workshops (GC Wkshps) (2016), pp. 1–5

    Google Scholar 

  31. E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

    Article  Google Scholar 

  32. G. Liu, X. Hou, J. Jin, F. Wang, Q. Wang, Y. Hao, Y. Huang, X. Wang, X. Xiao, A. Deng, 3D-MIMO with massive antennas paves the way to 5G enhanced mobile broadband: from system design to field trials. IEEE J. Sel. Areas Commun. 35(6), 1222–1233 (2017)

    Article  Google Scholar 

  33. F.W. Vook, A. Ghosh, T.A. Thomas, MIMO and beamforming solutions for 5G technology, in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (2014), pp. 1–4

    Google Scholar 

  34. D. Wubben, P. Rost, J.S. Bartelt, M. Lalam, V. Savin, M. Gorgoglione, A. Dekorsy, G. Fettweis, Benefits and impact of cloud computing on 5G signal processing: flexible centralization through cloud-RAN. IEEE Signal Process. Mag. 31(6), 35–44 (2014)

    Article  Google Scholar 

  35. A. Falchetti, C. Azurdia-Meza, S. Cespedes, Vehicular cloud computing in the dawn of 5G, in 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON) (2015), pp. 301–305

    Google Scholar 

  36. M. Tao, K. Ota, M. Dong, Foud: integrating fog and cloud for 5G-enabled V2G networks. IEEE Netw. 31(2), 8–13 (2017)

    Article  Google Scholar 

  37. L. Lei, D. Yuan, C. K. Ho, S. Sun, Power and channel allocation for non-orthogonal multiple access in 5G systems: tractability and computation. IEEE Trans. Wirel. Commun. 15(12), 8580–8594 (2016)

    Article  Google Scholar 

  38. Z. Ding, M. Peng, H.V. Poor, Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015)

    Article  Google Scholar 

  39. X. Liu, Y. Liu, X. Wang, H. Lin, Highly efficient 3d resource allocation techniques in 5G for NOMA enabled massive MIMO and relaying systems. IEEE J. Sel. Areas Commun. 35(12), 2785–2797 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maharaj, B.T., Awoyemi, B.S. (2022). Perspectives on Cognitive Radio Networks. In: Developments in Cognitive Radio Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-64653-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64653-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64652-3

  • Online ISBN: 978-3-030-64653-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics