Skip to main content

Deep Learning Opportunities for Resource Management in Cognitive Radio Networks

  • Chapter
  • First Online:

Abstract

This chapter discusses the use of machine and deep learning in spectrum and resource optimisation for the cognitive radio networks. Indeed, modern cognitive radio networks are being developed to employ artificial intelligence strategies for dynamic spectrum sensing and decision-making processes in order to achieve optimum and accurate decisions. Contrary to traditional wireless communications, learning goal-directed behaviour in dynamic and distributed environments like the cognitive radio networks still pose major challenges for the machine learning strategies being developed. The key difficulty lies in insufficient exploration of the state space, which results in agents being unable to learn robust policies. However, through the use of deep architecture such as deep learning and deep reinforcement learning, agents can explore new behaviour and could eventually help the agent solve tasks posed by the environment. The chapter explores and investigates deep architecture being applied in addressing spectrum management problems in the cognitive radio networks. The most integral part of this chapter is the discussion on how these deep architecture are orchestrated or tailored to solve different problems in the cognitive radio networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Meshkova, J. Riihijarvi, A. Achtzehn, P. Mahonen, Exploring simulated annealing and graphical models for optimization in cognitive wireless networks, in Proceedings of the IEEE GLOBECOM (2009), pp. 1–8

    Google Scholar 

  2. B. Awoyemi, B. Maharaj, A. Alfa, Optimal resource allocation solutions for heterogeneous cognitive radio networks. Digital Commun. Netw. 3(2), 129–139 (2017). http://www.sciencedirect.com/science/article/pii/S2352864816301043

    Article  Google Scholar 

  3. G.I. Tsiropoulos, O.A. Dobre, M.H. Ahmed, K.E. Baddour, Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Commun. Surv. Tutorials 18(1), 824–847 (2016)

    Article  Google Scholar 

  4. G. Soós, D. Ficzere, P. Varga, User group behavioural pattern in a cellular mobile network for 5G use-cases, in NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium (2020), pp. 1–7

    Google Scholar 

  5. L. Dai, R. Jiao, F. Adachi, H.V. Poor, L. Hanzo, Deep learning for wireless communications: an emerging interdisciplinary paradigm. IEEE Commun. Mag., 05 (2020)

    Google Scholar 

  6. T. O’Shea, J. Hoydis, An introduction to deep learning for the physical layer. IEEE Trans. Cognitive Commun. Netw. 3(4), pp. 563–575 (2017)

    Article  Google Scholar 

  7. i Scoop, 5G and IoT: the mobile broadband future of IoT (2020). https://www.i-scoop.eu/internet-of-things-guide/5g-iot/

  8. Ericsson, Discussing challenges in the internet of security (2020). https://www.ericsson.com/en/blog/2020/4/five-leaders-discuss-securing-iot

  9. B. Blanco-Filgueira, D. García-Lesta, M. Fernández-Sanjurjo, V.M. Brea, P. López, Deep learning-based multiple object visual tracking on embedded system for IoT and mobile edge computing applications. IEEE Int. Things J. 6(3), 5423–5431 (2019)

    Article  Google Scholar 

  10. Y. Bengio, Learning deep architectures for AI. Found. Trends Mach. Learn. 2(01), 1–55 (2009)

    Article  Google Scholar 

  11. Y. Roh, G. Heo, S. Whang, A survey on data collection for machine learning: a Big Data - AI integration perspective. IEEE Trans. Knowl. Data Eng. PP(10) (2019)

    Google Scholar 

  12. M.C. Hlophe, A model-based deep learning approach to spectrum management in distributed cognitive radio networks. Ph.D. Dissertation, University of Pretoria (2020)

    Google Scholar 

  13. M.C. Hlophe, B.T. Maharaj, Qos provisioning and energy saving scheme for distributed cognitive radio networks using deep learning. J. Commun. Netw. 22(3), 185–204 (2020)

    Article  Google Scholar 

  14. R. Greve, E. Jacobsen, S. Risi, Evolving neural turing machines for reward-based learning, in Proceedings of the Genetic and Evolutionary Computation Conference (2016), pp. 117–124

    Google Scholar 

  15. M. Zhang, L. Wang, Y. Feng, H. Yin, A spectrum sensing algorithm for OFDM signal based on deep learning and covariance matrix graph. IEICE Trans. Commun. E101.B(05), 2435–2444 (2018)

    Google Scholar 

  16. K. Yang, Z. Huang, X. Wang, X. Li, A blind spectrum sensing method based on deep learning. Sensors 19(10), 2270. https://doi.org/10.3390/s19102270

  17. M.C. Hlophe, S.B.T. Maharaj, Spectrum occupancy reconstruction in distributed cognitive radio networks using deep learning. IEEE Access 7, 14294–14307 (2019)

    Article  Google Scholar 

  18. S. Liu, K. Hu, W. Ni, Z. Xu, F. Wang, Z. Wan, A cognitive relay network throughput optimization algorithm based on deep reinforcement learning. Wirel. Commun. Mob. Comput. 2019(2731485), 1–8 (2019)

    Google Scholar 

  19. H. Li, T. Wei, A. Ren, Q. Zhu, Y. Wang, Deep reinforcement learning: framework, applications, and embedded implementations, in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2017), pp. 847–854

    Google Scholar 

  20. W. Zhou, J. Li, Y. Chen, L. Shen, Strategic interaction multi-agent deep reinforcement learning. IEEE Access 8, 119000–119009 (2020)

    Article  Google Scholar 

  21. Y. Gai, B. Krishnamachari, R. Jain, Learning multiuser channel allocations in cognitive radio networks: a combinatorial multi-armed bandit formulation, in 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum (DySPAN) (2010), pp. 1–9

    Google Scholar 

  22. Y. Du, Y. Xu, L. Xue, L. Wang, F. Zhang, An energy-efficient cross-layer routing protocol for cognitive radio networks using apprenticeship deep reinforcement learning. Energies 12(07), 2829 (2019)

    Google Scholar 

  23. N. Modi, P. Mary, C. Moy, Qos driven channel selection algorithm for cognitive radio network: Multi-user multi-armed bandit approach. IEEE Trans. Cognitive Commun. Netw. 3(1), 49–66 (2017)

    Article  Google Scholar 

  24. Y. Chen, H. Zhou, R. Kong, L. Zhu, H. Mao, Decentralized blind spectrum selection in cognitive radio networks considering handoff cost. Fut. Int. 9(03), 10 (2017)

    Google Scholar 

  25. E. Boursier, V. Perchet, SIC-MMAB: synchronisation involves communication in multiplayer multi-armed bandits. CoRR, vol. abs/1809.08151 (2018). http://arxiv.org/abs/1809.08151

  26. V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, Human-level control through deep reinforcement learning. Nature 518(02), 529–33 (2015)

    Article  Google Scholar 

  27. S. Srinivasan, M. Lanctot, V.F. Zambaldi, J. Pérolat, K. Tuyls, R. Munos, M. Bowling, Actor-critic policy optimization in partially observable multiagent environments. CoRR, abs/1810.09026 (2018). http://arxiv.org/abs/1810.09026

  28. T.D. Kulkarni, K. Narasimhan, A. Saeedi, J.B. Tenenbaum, Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation. CoRR, abs/1604.06057 (2016). http://arxiv.org/abs/1604.06057

  29. P. Si, H. Liang, W. Wu, Y. Zhang, Joint resource management in cognitive radio and edge computing based industrial wireless networks, in GLOBECOM 2017 - 2017 IEEE Global Communications Conference (2017), pp. 1–6

    Google Scholar 

  30. F.S. Mohammadi, A. Kwasinski, QoE-driven integrated heterogeneous traffic resource allocation based on cooperative learning for 5G cognitive radio networks, in 2018 IEEE 5G World Forum (5GWF), Silicon Valley, CA, USA (2018), pp. 244–249. https://doi.org/10.1109/5GWF.2018.8516939

  31. Z. Yang, K. Merrick, L. Jin, H.A. Abbass, Hierarchical deep reinforcement learning for continuous action control. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5174–5184 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maharaj, B.T., Awoyemi, B.S. (2022). Deep Learning Opportunities for Resource Management in Cognitive Radio Networks. In: Developments in Cognitive Radio Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-64653-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64653-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64652-3

  • Online ISBN: 978-3-030-64653-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics