Advertisement

A Look at Semantic Web Technology and the Potential Semantic Web Search in the Modern Era

Chapter
  • 93 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 941)

Abstract

The Semantic Web supports a set of technologies that exploit the standardization of the semantic representation of informational resources available on the web, representing the evolution of the current web. It provides a mechanism for formatting data in a machine-readable manner. Helping people in certain activities are done manually and end up consuming a lot of time in human daily life, linking individual properties of these data with globally accessible schemes. Since with so much information evolution in digital searches is inevitable, which with this technology provides ease and provides inferences about sates in scalable activities and modes. Therefore, this chapter aims to provide an overview of the semantic web and technology behind the semantic web search Engines, showing and approaching its success relation, with a concise bibliographic background, categorizing and synthesizing the potential of both technologies.

Keywords

Semantic Semantic web search Ontology Web Data 

References

  1. 1.
    Workman, M.: Introduction to This Book. In Semantic Web, pp. 1–5. Springer, ChamGoogle Scholar
  2. 2.
    Andročec, D., Novak, M., Oreški, D.: Using semantic web for internet of things interoperability: a systematic review. Int. J. Semant. Web Inf. Syst. (IJSWIS) 14(4), 147–171 (2018)CrossRefGoogle Scholar
  3. 3.
    Bernstein, A., Hendler, J., Noy, N.: A new look at the semantic web. Commun. ACM 59(9), 35–37 (2016)CrossRefGoogle Scholar
  4. 4.
    Machado, L.M.O., Souza, R.R., Graça Simões, M.: Semantic web or web of data? A diachronic study (1999 to 2017) of the publications of tim berners‐lee and the world wide web consortium. J. Assoc. Inf. Sci. Technol. 70(7), 701–714 (2019)Google Scholar
  5. 5.
    Nagvenkar, A., Pawar, J.D., Bhattacharyya, P.: Indowordnet conversion to web ontology language (OWL). In: Mititelu, V.B., Forascu, C., Fellbaum, C. Vossen, P. Bucharest (eds.) Proc. 8. Global WordNet Conference, Romania, 27-30 Jan 2016. 2016; 255–258. http://irgu.unigoa.ac.in/drs/handle/unigoa/4419 (2016)
  6. 6.
    França, R.P, Iano, Y., Monteiro, A.C.B., Arthur, R., Estrela, V.V. Betterment Proposal to Multipath Fading Channels Potential to MIMO Systems. In: Brazilian technology symposium, pp. 115–130. Springer, Cham (2018, October)Google Scholar
  7. 7.
    França, R.P., Iano, Y., Monteiro, A.C.B., Arthur, R.: Improvement for channels with multipath fading (MF) through the methodology CBEDE. In: Fundamental and Supportive Technologies for 5G Mobile Networks, pp. 25–43. IGI Global (2020)Google Scholar
  8. 8.
    França, R.P., Iano, Y., Monteiro, A.C.B., Arthur, R.: A proposal of improvement for transmission channels in cloud environments using the CBEDE methodology. In: Modern Principles, Practices, and Algorithms for Cloud Security, pp. 184–202. IGI Global (2020)Google Scholar
  9. 9.
    França, R.P., Iano, Y., Monteiro, A.C.B., Arthur, R.: Improvement of the transmission of information for ICT techniques through CBEDE methodology. In: Utilizing Educational Data Mining Techniques for Improved Learning: Emerging Research and Opportunities, pp. 13–34. IGI Global (2020)Google Scholar
  10. 10.
    França, R.P., Peluso, M., Monteiro, A.C.B., Iano, Y., Arthur, R., Estrela, V.V.: Development of a kernel: a deeper look at the architecture of an operating system. In: Brazilian technology symposium, pp. 103–114. Springer, Cham (2018, October)Google Scholar
  11. 11.
    Monteiro, A.C.B., Iano, Y., França, R.P., Arthur, R., Estrela, V.V.: A comparative study between methodologies based on the hough transform and watershed transform on the blood cell count. In: Brazilian technology symposium, pp. 65–78. Springer, Cham (2018, October)Google Scholar
  12. 12.
    Monteiro, A.C.B., Iano, Y., França, R.P., Arthur, R.: Methodology of high accuracy, sensitivity and specificity in the counts of erythrocytes and Leukocytes in blood smear images. In: Brazilian technology symposium, pp. 79–90. Springer, Cham (2018, October)Google Scholar
  13. 13.
    Monteiro, A.C.B., Iano, Y., França, R.P.: Detecting and counting of blood cells using watershed transform: an improved methodology. In: Brazilian technology symposium, pp. 301–310. Springer, Cham (2017, December)Google Scholar
  14. 14.
    Monteiro, A.C.B., Iano, Y., França, R.P.: An improved and fast methodology for automatic detecting and counting of red and white blood cells using watershed transform. VIII Simpósio de Instrumentação e Imagens Médicas (SIIM)/VII Simpósio de Processamento de Sinais da UNICAMP (2017)Google Scholar
  15. 15.
    McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intell. Syst. 16(2), 46–53 (2001)CrossRefGoogle Scholar
  16. 16.
    Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked Open Vocabularies (LOV): a gateway to reusable semantic vocabularies on the Web. Seman. Web 8(3), 437–452 (2017)CrossRefGoogle Scholar
  17. 17.
    Klusch, M., Kapahnke, P., Schulte, S., Lecue, F., Bernstein, A.: Semantic web service search: a brief survey. KI-Künstliche Intelligenz 30(2), 139–147 (2016)CrossRefGoogle Scholar
  18. 18.
    ud@@@ Din, I., Khusro, S., Ullah, I., Rauf, A.: Semantic history: ontology-based modeling of users’ web browsing behaviors for improved web page revisitation. In: Proceedings of the Computational Methods in Systems and Software, pp. 204–215. Springer, Cham (2018, September)Google Scholar
  19. 19.
    Krause, S., Hennig, L., Moro, A., Weissenborn, D., Xu, F., Uszkoreit, H., Navigli, R.: Sar-graphs: a language resource connecting linguistic knowledge with semantic relations from knowledge graphs. J. Web Seman. 37, 112–131 (2016)CrossRefGoogle Scholar
  20. 20.
    Klimek, B.: Proposing an OntoLex-MMoOn alignment: towards an interconnection of two linguistic domain models. In: LDK workshops, pp. 68–73 (2017)Google Scholar
  21. 21.
    Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman and Hall/CRC (2009)Google Scholar
  22. 22.
    Poirier, L.: Making the Web Meaningful: A History of Web Semantics. The SAGE Handbook of Web History, pp. 256–269. SAGE, London (2018)Google Scholar
  23. 23.
    Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifiers (URI): Generic Syntax (1998)Google Scholar
  24. 24.
    Seltzer, W.: World Wide Web Consortium (W3C) standards for the open web platform. In: Open Source, Open Standards, Open Minds Conference Proceedings, Washington DC (2016, April)Google Scholar
  25. 25.
    Abou-Zahra, S., Brewer, J., Cooper, M.: Web standards to enable an accessible and inclusive internet of things (IoT). In: Proceedings of the 14th Web for All Conference on the Future of Accessible Work. 2017. W4A '17: Proceedings of the 14th Web for All Conference on The Future of Accessible Work April 2017, Article No. 9, pp. 1–4.  https://doi.org/10.1145/3058555.3058568
  26. 26.
    Peng, P., Zou, L.: Survey on federated RDF systems. Front. Data Comput. 1(1), 73–81 (2019)Google Scholar
  27. 27.
    Ristoski, P., Paulheim, H.: Semantic Web in data mining and knowledge discovery: a comprehensive survey. Web Seman. Sci. Serv. Agents World Wide Web 36, 1–22 (2016)CrossRefGoogle Scholar
  28. 28.
    Pereira, F.A., Krzyzanowski, R.F., de Morais Imperatriz, I.M.: Técnicas de Search Engine Optimization (SEO) aplicadas no site da Biblioteca Virtual da FAPESP. Cadernos BAD 1, 251–265 (2019)Google Scholar
  29. 29.
    Bala, M., D. Verma.: A critical review of digital marketing. Int. J. Manag. IT Eng. 8(10), 321–339 (2018)Google Scholar
  30. 30.
    Kasemsap, K.: Software as a service, semantic web, and big data: theories and applications. In: The Resource Management and Efficiency in Cloud Computing Environments, pp. 264–285. IGI Global (2017)Google Scholar
  31. 31.
  32. 32.
    Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Enabling query technologies for the semantic sensor web. Int. J. Seman. Web Inf. Syst. (IJSWIS) 8(1), 43–63 (2012)CrossRefGoogle Scholar
  33. 33.
    Souza, E.G., Bezerra, D.A., Costa, W.F.C.: Description of resources in a metadata structure inspired in the FRBR model: Brapci 2.0. Em Questão 22(1), 113z136 (2016, Jan/Apr); 24(2), 136–113 (2018)Google Scholar
  34. 34.
    Palmirani, M., Rossi, A., Martoni, M., Margaret, H.: A methodological framework to design a machine-readable privacy icon set. In: Data Protection/LegalTech Proceedings of the 21st International Legal Informatics Symposium IRIS 2018 (2018)Google Scholar
  35. 35.
    Pauwels, P., Zhang, S., Lee, Y.C.: Semantic web technologies in AEC industry: a literature overview. Autom. Constr. 73, 145–165 (2017)CrossRefGoogle Scholar
  36. 36.
    Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)Google Scholar
  37. 37.
    Singhal, A., Pandey, D., Nagpal, R., Mehrotra, D.: Measuring informativeness of a web document. In: 2016 6th International Conference-Cloud System and Big Data Engineering (Confluence), pp. 654–657. IEEE (2016, January)Google Scholar
  38. 38.
    Krause, J.: HTML: hypertext markup language. In: Introducing Web Development, pp. 39–63. Apress, Berkeley, CA (2016)Google Scholar
  39. 39.
    Cover, R., Duncan N., Barnard, D.T.: The progress of SGML (Standard Generalized Markup Language): extracts from a comprehensive bibliography. Literary Linguist. Comput. 6(3), 197–209 (1991)Google Scholar
  40. 40.
    Frohme, M., Steffen, B.: Active mining of document type definitions. In: The international workshop on formal methods for industrial critical systems, pp. 147–161. Springer, Cham (2018, September)Google Scholar
  41. 41.
    Gao, C.F., Qian, Y., Zhou, D.P.: U.S. Patent No. 10,318,616. U.S. Patent and Trademark Office, Washington, DC (2019)Google Scholar
  42. 42.
    O’farrell, W.G., Consens, M.: U.S. Patent No. 10,394,685. U.S. Patent and Trademark Office, Washington, DC (2019)Google Scholar
  43. 43.
    Wang, M., Wang, J., Guo, K.: Extensible markup language keywords search based on security access control. Int. J. Grid Util. Comput. 9(1), 43–50 (2018)CrossRefGoogle Scholar
  44. 44.
    Creamer, T.E., Hrischuk, C.E. U.S. Patent No. 9,817,914. U.S. Patent and Trademark Office, Washington, DC (2017)Google Scholar
  45. 45.
    Lefrançois, M., Zimmermann, A., Bakerally, N.: A SPARQL extension for generating RDF from heterogeneous formats. In: The European Semantic Web Conference, pp. 35–50. Springer, Cham (2017, May)Google Scholar
  46. 46.
    Adjallah-Kondo, G.C.., Ma, Z.: A survey on JSON mapping with XML/RDF. In: Emerging Technologies and Applications in Data Processing and Management, pp. 92–113. IGI Global (2019)Google Scholar
  47. 47.
    Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked data: a survey. Seman. Web 7(1), 63–93 (2016)CrossRefGoogle Scholar
  48. 48.
    Tammisto, Y., Lindman, J.: Definition of open data services in software business. In International Conference of Software Business, pp. 297–303. Springer, Berlin, Heidelberg (2012, June)Google Scholar
  49. 49.
    Gottschalk, K., Graham, S., Kreger, H., Snell, J.: Introduction to web services architecture. IBM Syst. J. 41(2), 170–177 (2002)CrossRefGoogle Scholar
  50. 50.
    Guarino, N., Oberle, D., Staab, S.: What is an ontology?. In Handbook on Ontologies, pp. 1–17. Springer, Berlin, Heidelberg (2009)Google Scholar
  51. 51.
    Steffen, S., Studer, R. (eds.) Handbook on Ontologies. Springer Science & Business Media (2010)Google Scholar
  52. 52.
    Gruber, T. (2018). Ontology. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems. Springer, New York, NY.  https://doi.org/10.1007/978-1-4614-8265-9_1318
  53. 53.
    Silva, A.M.D.D.: Folksonomies in archives: controlled collaboration for specific documents. Ariadne 77 (2017)Google Scholar
  54. 54.
    Rebstadt, J., Brinkschulte, L., Enders, A., Mertens, R.: A visual language for OWL lite editing. In: SEMANTiCS. Posters, Demos, SuCCESS (2016, September)Google Scholar
  55. 55.
    Pauwels, P., Terkaj, W.: EXPRESS to OWL for construction industry: towards a recommendable and usable ifcOWL ontology. Autom. Constr. 63, 100–133 (2016)CrossRefGoogle Scholar
  56. 56.
    Mandal, S., Roy, S.K.: Linked open data: FOAF-enabled graph visualization. Chin. Librarianship 45 (2018)Google Scholar
  57. 57.
    Chiba, H., Uchiyama, I.: SPANG: a SPARQL client supporting generation and reuse of queries for distributed RDF databases. BMC Bioinf. 18(1), 93 (2017)CrossRefGoogle Scholar
  58. 58.
    Patel, P., Ali, M. I., Sheth, A.: From raw data to smart manufacturing: AI and semantic web of things for industry 4.0. IEEE Intell. Syst. 33(4), 79–86 (2018)Google Scholar
  59. 59.
    Erl, T.: Service-Oriented Architecture: Analysis and Design for Services and Microservices. Prentice-Hall Press (2016)Google Scholar
  60. 60.
    Sabou, M., Aroyo, L., Bontcheva, K., Bozzon, A., Qarout, R.K.: Semantic web and human computation: the status of an emerging field. Seman. Web 9(3), 291–302 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.School of Electrical and Computer Engineering (FEEC)University of Campinas – UNICAMPCampinasBrazil
  2. 2.Faculty of Technology (FT)University of Campinas (UNICAMP)LimeiraBrazil

Personalised recommendations