Advertisement

Semantic Web and IoT

Chapter
  • 99 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 941)

Abstract

In this chapter, we provide an overview of the current trends in using semantic technologies in the IoT domain, presenting practical applications and use cases in different domains, such as in the healthcare domain (home care and occupational health), disaster management, public events, precision agriculture, intelligent transportation, building and infrastructure management. More specifically, we elaborate on semantic web-enabled middleware, frameworks and architectures (e.g. semantic descriptors for M2M) proposed to overcome the limitations of device and data heterogeneity. We present recent advances in structuring, modelling (e.g. RDFa, JSON-LD) and semantically enriching data and information derived from sensor environments, focusing on the advanced conceptual modelling capabilities offered by semantic web ontology languages (e.g. RDF/OWL2). Querying and validation solutions on top of RDF graphs and Linked Data (e.g. SPARQL, SPIN and SHACL) are also presented. Furthermore, insights are provided on reasoning, aggregation, fusion and interpretation solutions that aim to intelligently process and ingest sensor information, infusing also human awareness for advanced situational awareness.

References

  1. 1.
    Swetina, J., Lu, G., Jacobs, P., Ennesser, F., Song, J.: Toward a standardized common M2M service layer platform: introduction to oneM2M. IEEE Wirel. Commun. 21(3), 20–26 (2014)Google Scholar
  2. 2.
    Noura, M., Atiquzzaman, M., Gaedke, M.: Interoperability in internet of things: taxonomies and open challenges. Mobile Netw. Appl. 24(3), 796–809 (2019)CrossRefGoogle Scholar
  3. 3.
    Alaa, M., Zaidan, A.A., Zaidan, B.B., Talal, M., Kiah, M.L.M.: A review of smart home applications based on Internet of Things. J. Netw. Comput. Appl. 97, 48–65 (2017)CrossRefGoogle Scholar
  4. 4.
    Ramparany, F., Cao, Q.: A semantic approach to IoT data aggregation and interpretation applied to home automation. In: 2016 International Conference on Internet of Things and Applications (IOTA), pp. 23–28. IEEE (2016)Google Scholar
  5. 5.
    Huang, X., Yi, J., Zhu, X., Chen, S.: A semantic approach with decision support for safety service in smart home management. Sensors 16(8), 1224 (2016)CrossRefGoogle Scholar
  6. 6.
    Zolfaghari, S., Zall, R., Keyvanpour, M. R.: SOnAr: smart ontology activity recognition framework to fulfill semantic web in smart homes. In: 2016 Second International Conference on Web Research (ICWR), pp. 139–144. IEEE (2016)Google Scholar
  7. 7.
    Eine, B., Jurisch, M., Quint, W.: Ontology-based big data management. Systems 5(3), 45 (2017)CrossRefGoogle Scholar
  8. 8.
    SeeClickFix | 311 Request and Work Management Software. https://en.seeclickfix.com/. Cited 25 2019
  9. 9.
    FixMyStreet. https://www.fixmystreet.com/. Cited 25 2019
  10. 10.
    Tsampoulatidis, I., Ververidis, D., Tsarchopoulos, P., Nikolopoulos, S., Kompatsiaris, I., Komninos, N.: ImproveMyCity: an open source platform for direct citizen-government communication. In Proceedings of the 21st ACM International Conference on Multimedia, p. 839–842. ACM (2013)Google Scholar
  11. 11.
    Qamar, T., Bawany, N. Z., Javed, S., Amber, S.: Smart city services ontology (SCSO): semantic modeling of smart city applications. In: 2019 Seventh International Conference on Digital Information Processing and Communications (ICDIPC), pp. 52–56. IEEE (2019)Google Scholar
  12. 12.
    Van de Vyvere, B., Colpaert, P., Mannens, E., Verborgh, R.: Open traffic lights: a STRATEGY for publishing and preserving traffic lights data. In: Companion Proceedings of the 2019 World Wide Web Conference, pp. 966–971. ACM (2019)Google Scholar
  13. 13.
    Open traffic lights ontology. https://w3id.org/opentrafficlights. Cited 25 2019
  14. 14.
    Wachttijd tot groenlicht https://codepen.io/brechtvdv/full/BMQPNX Cited 25 2019
  15. 15.
    Van de Vyvere, B., D’haene, K., D’haene, K., Colpaert, P., Verborgh, R.: Predicting phase durations of traffic lights using live open traffic lights data. In: Joint Proceedings of the 1st International Workshop On Semantics For Transport and the 1st International Workshop on Approaches for Making Data Interoperable co-located with 15th Semantics Conference (SEMANTiCS 2019), pp. 1–7 (2019)Google Scholar
  16. 16.
    Choi, C., Esposito, C., Wang, H., Liu, Z., Choi, J.: Intelligent Power Equipment Management Based on Distributed Context-Aware Inference in Smart Cities. IEEE (2018)Google Scholar
  17. 17.
    Howell, S.K., Rezgui, Y., Beach, T., Zhao, W., Terlet, J., Li, H.: Smart water system interoperability: integrating data and analytics for demand optimized management through semantics. In: ICCCBE, pp. 1–9 (2016)Google Scholar
  18. 18.
    Goel, D., Pahal, N., Jain, P., Chaudhury, S.: An ontology-driven context aware framework for smart traffic monitoring. In: 2017 IEEE Region 10 Symposium (TENSYMP), pp. 1–5. IEEE (2017)Google Scholar
  19. 19.
    Weber, M., Akella, R., Lee, E. A.: Service discovery for the connected car with semantic accessors. In: 2019 IEEE Intelligent Vehicles Symposium, vol. IV, pp. 2417–2422. IEEE (2019)Google Scholar
  20. 20.
    Syzdykbayev, M., Hajari, H., Karimi, H. A.: An ontology for collaborative navigation among autonomous cars, drivers, and pedestrians in smart cities. In: 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), pp. 1–6. IEEE (2019)Google Scholar
  21. 21.
    Barzegar, M., Sadeghi-Niaraki, A., Shakeri, M., Choi, S.M.: A context-aware route finding algorithm for self-driving tourists using ontology. Electronics 8(7), 808 (2019)CrossRefGoogle Scholar
  22. 22.
    Carenini, A., Ugo, D. A., Stefanos, G., Kallehbasti, P., Mehdi, M., Rossi, M. G., Riccardo, S.: ST4RT–semantic transformations for rail transportation. In: Transport Research Arena TRA 2018, pp. 1–10 (2018)Google Scholar
  23. 23.
    Pace, P., Aloi, G., Caliciuri, G., Gravina, R., Savaglio, C., Fortino, G., Corona, M.: INTER-Health: an interoperable IoT solution for active and assisted living healthcare services. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 81–86. IEEE (2019)Google Scholar
  24. 24.
    Goossen, W.T.: Detailed clinical models: representing knowledge, data and semantics in healthcare information technology. Healthc. Inf. Res. 20(3), 163–172 (2014)CrossRefGoogle Scholar
  25. 25.
    Adel, E., El-Sappagh, S., Barakat, S., Elmogy, M.: A unified fuzzy ontology for distributed electronic health record semantic interoperability. In: U-Healthcare Monitoring Systems, pp. 353–395. Academic Press (2019)Google Scholar
  26. 26.
    Kontopoulos, E., Mitzias, P., Moßgraber, J., Hertweck, P., van der Schaaf, H., Hilbring, D., Lombardo, F., Norbiato, D., Ferri, M., Karakostas, A., Vrochidis, S.: Ontology-based representation of crisis management procedures for climate events. In: ISCRAM (2018)Google Scholar
  27. 27.
    Chatzimichail, A., Chatzigeorgiou, C., Tsanousa, A., Ntioudis, D., Meditskos, G., Andritsopoulos, F., Karaberi, C., Kasnesis, P., Kogias, D.G., Gorgogetas, G., Vrochidis, S.: Internet of things infrastructure for security and safety in public places. Information 10(11), 333 (2019)CrossRefGoogle Scholar
  28. 28.
    Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1813–1820. IEEE (2018)Google Scholar
  29. 29.
    Bista, H., Yen, I. L., Bastani, F., Mueller, M., Moore, D.: Semantic-based information sharing in vehicular networks. In: 2018 IEEE International Conference on Web Services (ICWS), pp. 82–289. IEEE (2018)Google Scholar
  30. 30.
    Xing, X., Zhong, B., Luo, H., Li, H., Wu, H.: Ontology for safety risk identification in metro construction. Comput. Ind. 109, 14–30 (2019)CrossRefGoogle Scholar
  31. 31.
    Durbha, S.S., King, R.L.: Semantics-enabled framework for knowledge discovery from Earth observation data archives. IEEE Trans. Geosci. Remote Sens. 43(11), 2563–2572 (2005)CrossRefGoogle Scholar
  32. 32.
    Audebert, N., Le Saux, B., Lefèvre, S.: Joint learning from earth observation and openstreetmap data to get faster better semantic maps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 67–75 (2017)Google Scholar
  33. 33.
    Audebert, N., Le Saux, B., Lefèvrey, S. Fusion of heterogeneous data in convolutional networks for urban semantic labeling. In: 2017 Joint Urban Remote Sensing Event (JURSE), pp. 1–4. IEEE (2017)Google Scholar
  34. 34.
    Yao, W., Marmanis, D., Datcu, M.: Semantic segmentation using deep neural networks for SAR and optical image pairs. In: Proceedings of Big Data from Space, pp. 1–4 (2017)Google Scholar
  35. 35.
    Masmoudi, M., Taktak, H., Lamine, S.B.A.B., Karray, M.H., Zghal, H.B., Archimede, B., Mrissa, M., Guegan, C.G.: PREDICAT: a semantic service-oriented platform for data interoperability and linking in earth observation and disaster prediction. In: 2018 IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA), pp. 194–201. IEEE (2018)Google Scholar
  36. 36.
    Tiede, D., Baraldi, A., Sudmanns, M., Belgiu, M., Lang, S.: Architecture and prototypical implementation of a semantic querying system for big Earth observation image bases. Eur. J. Remote Sens. 50(1), 452–463 (2017)CrossRefGoogle Scholar
  37. 37.
    Wang, C., Wang, W., Chen, N.: Building an ontology for hydrologic monitoring. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 6232–6234. IEEE (2017)Google Scholar
  38. 38.
    DEPARTMENTFORcULTURE, M.S.: Creative Industries Economic Estimates. https://www.gov.uk/government/statistics. Cited 2015
  39. 39.
    Meditskos, G., Vrochidis, S., Kompatsiaris, I.: V4Ann: representation and interlinking of atom-based annotations of digital content. In: International Conference on Semantic Systems, pp. 124–139. Springer, Cham (2019)Google Scholar
  40. 40.
    Alvanitopoulos, P., Diplaris, S., de Gelder, B., Shvets, A., Benayoun, M., Koulali, P., Moghnieh, A., Shekhawat, Y., Stentoumis, C., Hosmer, T., Anadol, R., Borreguero, M., Martin, A., Sciama, P., Avgerinakis, K., Petrantonakis, P., Briassouli, A., Mille, S., Tellios, A., Fraguada, L., Sprengel, H., Kalisperakis, I., Cabanas, N., Nikolopoulos, S., Skouras, S., Vogler, V., Zavraka, D., Piesk, J., Grammatikopoulos, L., Wanner, L., Klein, T., Vrochidis, S., Kompatsiaris, I.: MindSpaces: art-driven adaptive outdoors and indoors design. In: Ninth International Conference on Digital Presentation and Preservation of Cultural and Scientific Heritage—DiPP2019, vol. 8, pp. 391–400 (2019)Google Scholar
  41. 41.
    Dimitropoulos, K., Tsalakanidou, F., Nikolopoulos, S., Kompatsiaris, I., Grammalidis, N., Manitsaris, S., Denby, B., Crevier-Buchman, L., Dupont, S., Charisis, V., Hadjileontiadis, L.: A multimodal approach for the safeguarding and transmission of intangible cultural heritage: The case of i-Treasures. IEEE Intell. Syst. 33(6), 3–16 (2018)CrossRefGoogle Scholar
  42. 42.
    Sametinger, F., Baker, C., Ranaivoson, H., Bryan-Kinns, N.: WEAR sustain. Wearable technologists Engage with Artists for Responsible innovation), Sustainability Strategy Toolkit (2019)Google Scholar
  43. 43.
    Kasnesis, P., Tatlas, N.A., Mitilineos, S.A., Patrikakis, C.Z., Potirakis, S.M.: Acoustic sensor data flow for cultural heritage monitoring and safeguarding. Sensors 19(7), 1629 (2019)CrossRefGoogle Scholar
  44. 44.
    Jouan, P.A., Hallot, P.: Digital twin: a Hbim-based methodology to support preventive conservation of historic assets through heritage significance awareness. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 42(2019), 609–615 (2019)Google Scholar
  45. 45.
    Kasnesis, P., Kogias, D.G., Toumanidis, L., Xevgenis, M.G., Patrikakis, C.Z., Giunta, G., Calsi, G.L.: An IoE architecture for the preservation of the cultural heritage: the STORM use case. In: Harnessing the Internet of Everything (IoE) for Accelerated Innovation Opportunities, pp. 193–214. IGI Global (2019)Google Scholar
  46. 46.
    Mousheimish, R., Taher, Y., Zeitouni, K., Dubus, M.: Smart preserving of cultural heritage with PACT-ART. Multimedia Tools Appl. 76(24), 26077–26101 (2017)CrossRefGoogle Scholar
  47. 47.
    Maksimović, M., Ćosović, M.: Preservation of cultural heritage sites using IoT. In: 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–4. IEEE (2019)Google Scholar
  48. 48.
    Moraitou, E., Aliprantis, J., Caridakis, G.: Semantic Preventive conservation of cultural heritage collections. In: SW4CH@ ESWC (2018)Google Scholar
  49. 49.
    Anatoly, K., Rezeda, K., Maxim, L., Feng, L., Hu, L., Chen, M., Igor, B.: CHPC: A complex semantic-based secured approach to heritage preservation and secure IoT-based museum processes. Comput. Commun. 148, 240–249 (2019)CrossRefGoogle Scholar
  50. 50.
    Stathopoulos, E.A., Paliokas, I., Meditskos, G., Diplaris, S., Tsafaras, S., Valkouma, E., Pehlivanides, G., Riggas, C., Vrochidis, S., Votis, K., Tzovaras, D.: Smart discovery of cultural and natural tourist routes. In: IEEE/WIC/ACM International Conference on Web Intelligence-Companion, vol. 208–214. ACM (2019)Google Scholar
  51. 51.
    Moraitou, E., Konstantakis, M., Kontaki, C., Aliprantis, I., Kalatha, E., Kalavrytinos, P., Tsigris, A., Tsougkrianis, P., Anagnostopoulos, C., Caridakis, G.: Travelogue with augmented cultural and contemporary experience. In: CIRA@ EuroMed, pp. 66–75 (2018)Google Scholar
  52. 52.
    Nishanbaev, I., Champion, E., McMeekin, D.A.: A survey of geospatial semantic web for cultural heritage. Heritage 2(2), 1471–1498 (2019)CrossRefGoogle Scholar
  53. 53.
    Chianese, A., Piccialli, F.: A smart system to manage the context evolution in the Cultural Heritage domain. Comput. Electr. Eng. 55, 27–38 (2016)CrossRefGoogle Scholar
  54. 54.
    Piccialli, F., Chianese, A.: A location-based IoT platform supporting the cultural heritage domain. Concurrency Comput. Pract. Experience 29(11), e4091 (2017)CrossRefGoogle Scholar
  55. 55.
    Chianese, A., Piccialli, F., Jung, J.E.: The internet of cultural things: towards a smart cultural heritage. In: 2016 12th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), pp. 493–496. IEEE (2016)Google Scholar
  56. 56.
    Marulli, F., Benedusi, P., Racioppi, A., Ungaro, L. F.: What’s the matter with cultural heritage tweets? An ontology–based approach for CH sensitivity estimation in social network activities. In: 2015 11th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), pp. 789–795. IEEE (2015)Google Scholar
  57. 57.
    Konstantakis, M., Michalakis, K., Aliprantis, J., Kalatha, E., Moraitou, E., Caridakis, G.: A methodology for optimised cultural user personas experience-CURE architecture. In: Proceedings of the 32nd International BCS Human Computer Interaction Conference, vol. 32, pp. 1–8 (2018)Google Scholar
  58. 58.
    Chianese, A., Piccialli, F.: A perspective on applications of in-memory and associative approaches supporting cultural big data analytics. Int. J. Comput. Sci. Eng. 16(3), 219–233 (2018)Google Scholar
  59. 59.
    Cuomo, S., De Michele, P., Piccialli, F., Sangaiah, A.K.: Reproducing dynamics related to an Internet of Things framework: a numerical and statistical approach. J. Parallel Distrib. Comput. 118, 359–368 (2018)CrossRefGoogle Scholar
  60. 60.
    Konstantakis, M., Aliprantis, J., Teneketzis, A., Caridakis, G.: Understanding user experience aspects in cultural heritage interaction. In: Proceedings of the 22nd Pan-Hellenic Conference on Informatics, pp. 267–271. ACM (2018)Google Scholar
  61. 61.
    Korzun, D., Varfolomeyev, A., Yalovitsyna, S., Volokhova, V.: Semantic infrastructure of a smart museum: toward making cultural heritage knowledge usable and creatable by visitors and professionals. Pers. Ubiquitous Comput. 21(2), 345–354 (2017)CrossRefGoogle Scholar
  62. 62.
    Petrina, O.B., Korzun, D.G., Volokhova, V.V., Yalovitsyna, S.E., Varfolomeyev, A.G.: Semantic approach to opening museum collections of everyday life history for services in internet of things environments. Int. J. Embedded Real-Time Commun. Syst. (IJERTCS) 8(1), 31–44 (2017)CrossRefGoogle Scholar
  63. 63.
    Maietti, F., Piaia, E., Mincolelli, G., Di Giulio, R., Imbesi, S., Marchi, M., Giacobone, G.A. and Brunoro, S.: Accessing and understanding cultural heritage through users experience within the INCEPTION project. In: Euro-Mediterranean Conference, pp. 356–365. Springer, Cham (2018)Google Scholar
  64. 64.
    Castiglione, A., Colace, F., Moscato, V., Palmieri, F.: CHIS: a big data infrastructure to manage digital cultural items. Future Gener. Comput. Syst. 86, 1134–1145 (2018)CrossRefGoogle Scholar
  65. 65.
    Eclipse IoT | IoT development made simple. https://iot.eclipse.org. Cited by 3 2020
  66. 66.
    Hepp, M.: eclassowl: A fully-edged products and services ontology in owl. In: Poster Proceedings of ISWC, Galway (2005)Google Scholar
  67. 67.
    Kharlamov, E., Grau, B.C., Jimenez-Ruiz, E., Lamparter, S., Mehdi, G., Ringsquandl, M., Nenov, Y., Grimm, S., Roshchin, M., Horrocks, I.: Capturing industrial information models with ontologies and constraints. In: The Semantic Web—ISWC 2016—15th International Semantic Web Conference, Kobe, Japan, pp. 17–21, 2016, Proceedings, Part II (2016)Google Scholar
  68. 68.
    Alexakos, C., Anagnostopoulos, C., Kalogeras, A. P.: Integrating IoT to manufacturing processes utilizing semantics. In: 2016 IEEE 14th International Conference on Industrial Informatics (INDIN), pp. 154–159. IEEE (2016)Google Scholar
  69. 69.
    De Roode, M., Fernández-Izquierdo, A., Daniele, L., Poveda-Villalón, M., García-Castro, R. SAREF4INMA: A SAREF Extension for the Industry and Manufacturing DomainGoogle Scholar
  70. 70.
    Alvanou, G., Lytra, I., Petersen, N.: An MTConnect Ontology for Semantic Industrial Machine Sensor AnalyticsGoogle Scholar
  71. 71.
    Kootbally, Z., Kramer, T.R., Schleno , C., Gupta, S.K.: Overview of an ontology- based approach for kit building applications. In: 2017 IEEE 11th International Conference Semantic Computing (ICSC), pp. 520–525. IEEE (2017)Google Scholar
  72. 72.
    Bonacin, R., Nabuco, O.F., Junior, I.P.: Ontology models of the impacts of agriculture and climatechanges on water resources: scenarios on interoperability and information recovery. Future Gener. Comput. Syst. 54, 423–434 (2016)CrossRefGoogle Scholar
  73. 73.
    Shrestha, R., Davenport, G.F., Bruskiewich, R., Arnaud, E.: Development of crop ontology for sharing crop phenotypic information. In: Drought Phenotyping in Crops: From Theory to Practice, pp. 167–176 (2011)Google Scholar
  74. 74.
    Shrestha, R., Senger, M., Ramil, M., Davenport, G., Arnaud, E.: Development of gcp ontology for sharing crop information. Nat. Prec. (2010)Google Scholar
  75. 75.
    Jonquet, C.: Agroportal: an ontology repository for agronomy. In: European Conference Dedicated to the Future Use of ICT in the Agri-Food Sector, Bioresource and Biomass Sector, EFITA’17, Demonstration Session (2017)Google Scholar
  76. 76.
    International Food Policy Research Institute: Linked Open Data—Agricultural Technology Ontology (2017). http://data.ifpri.org/lod/at. Cited by 3 2020
  77. 77.
    Wang, Y., Wang, Y., Wang, J., Yuan, Y., Zhang, Z.: An ontology-based approach to integration of hilly citrus production knowledge. Comput. Electron. Agric. 113, 24–43 (2015)CrossRefGoogle Scholar
  78. 78.
    Joo, S., Koide, S., Takeda, H., Horyu, D., Takezaki, A., Yoshida, T.: Agriculture activity ontology: an ontology for core vocabulary of agriculture activity. In International Semantic Web Conference (Posters & Demos), vol. 33 (2016)Google Scholar
  79. 79.
    Hu, S., Wang, H., She, C., Wang, J.: AgOnt: ontology for agriculture internet of things. In: International Conference on Computer and Computing Technologies in Agriculture, pp. 131–137. Springer, Berlin, Heidelberg (2010)Google Scholar
  80. 80.
    Aubert C., Buttigieg P.L., Laporte M.A., Devare M., Arnaud E.: CGIAR Agronomy Ontology (2017). http://purl.obolibrary.org/obo/agro.owl. Cited by 3 2020
  81. 81.
    CTA: Agrovoc Multilingual Agricultural Thesaurus. http://aims.fao.org/standards/agrovoc/concept-scheme. Cited by 3 2020
  82. 82.
    Agriculture Semantics. https://agrisemantics.org/. Cited by 3 2020
  83. 83.
    Cab thesaurus. https://www.cabi.org/cabthesaurus/. Cited by 3 2020
  84. 84.
    Agriculture Class. https://agclass.nal.usda.gov/. Cited by 4 2020
  85. 85.
    FAO: Agricultural Metadata Element set (agmes) (2018). http://aims.fao.org/standards/agmes. Cited by 3 2020
  86. 86.
    Martini, D., Schmitz, M., Mietzsch, E.: agrordf as a semantic overlay to agroxml: a general model for enhancing interoperability in agrifood data standards. In: CIGR conference on Sustainable Agriculture Through ICT Innovation (2013)Google Scholar
  87. 87.
    Drury, B., Fernandes, R., Moura, M.F.: A survey of semantic web technology for agriculture. In: Information Processing in Agriculture (2019)Google Scholar
  88. 88.
    Atzori, L., Iera, A., Morabito, G., Nitti, M.: The social internet of things (siot)-when social networks meet the internet of things: concept, architecture and network characterization. Comput. Netw. 56(16), 3594–3608 (2012)CrossRefGoogle Scholar
  89. 89.
    Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012)Google Scholar
  90. 90.
    Wang, A., Chen, G., Wu, X., Liu, L., An, N., Chang, C.Y.: Towards human activity recognition: a hierarchical feature selection framework. Sensors 18(11), 3629 (2018)CrossRefGoogle Scholar
  91. 91.
    Lus̆trek, M., Kaluz̆a, B.: Fall detection and activity recognition with machine learning. Informatica 33(2) (2009)Google Scholar
  92. 92.
    Ustev, Y. E., Durmaz Incel, O., Ersoy, C.: User, device and orientation independent human activity recognition on mobile phones: Challenges and a proposal. In; Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, pp. 1427–1436. ACM (2013)Google Scholar
  93. 93.
    Brezmes, T., Gorricho, J.L., Cotrina, J.: Activity recognition from accelerometer data on a mobile phone. In: International Work-Conference on Artificial Neural Networks, pp. 796–799. Springer, Berlin, Heidelberg (2009)Google Scholar
  94. 94.
    Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2012)CrossRefGoogle Scholar
  95. 95.
    Mangai, U.G., Samanta, S., Das, S., Chowdhury, P.R.: A survey of decision fusion and feature fusion strategies for pattern classification. IETE Tech. Rev. 27(4), 293–307 (2010)CrossRefGoogle Scholar
  96. 96.
    Tryfona, N., Pfoser, D.: Data semantics in location-based services. In: Journal on Data Semantics vol. III, pp. 168–195. Springer, Berlin, Heidelberg (2005)Google Scholar
  97. 97.
    Scherp, A., Franz, T., Saathoff, C., Staab, S.: F–a model of events based on the foundational ontology dolce+ DnS ultralight. In: Proceedings of the Fifth International Conference on Knowledge Capture, pp. 137–144. ACM (200)Google Scholar
  98. 98.
    Gangemi, A., Mika, P.: Understanding the semantic web through descriptions and situations. In: OTM Confederated International Conferences on the Move to Meaningful Internet Systems, pp. 689–706. Springer, Berlin, Heidelberg (2003)Google Scholar
  99. 99.
    Scherp, A., Franz, T., Saathoff, C., Staab, S.: A core ontology on events for representing occurrences in the real world. Multimedia Tools Appl. 58(2), 293–331 (2012)CrossRefGoogle Scholar
  100. 100.
    Van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and use of the simple event model (SEM). Web Semant. Sci. Serv. Agents World Wide Web 9(2), 128–136 (2011)Google Scholar
  101. 101.
    Media Ontology. https://www.w3.org/TR/mediaont-10/. Cited by 4 2020
  102. 102.
    Stegmaier, F., Bailer, W., Bürger, T., Suárez-Figueroa, M.C., Mannens, E., Evain, J.P., Hóffernig, M., Champin, P.A., Dóller, M., Kosch, H.: Unified access to media metadata on the web. IEEE Multimedia 20(2), 22–29 (2012)Google Scholar
  103. 103.
    Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semantic Web 8(3), 489–508 (2017)CrossRefGoogle Scholar
  104. 104.
    Dubey, M., Banerjee, D., Chaudhuri, D., Lehmann, J.: Earl: joint entity and relation linking for question answering over knowledge graphs. In: International Semantic Web Conference, pp. 108–126. Springer, Cham (2018)Google Scholar
  105. 105.
    Cifariello, P., Ferragina, P., Ponza, M.: Wiser: A semantic approach for expert finding in academia based on entity linking. Inf. Syst. 82, 1–16 (2019)CrossRefGoogle Scholar
  106. 106.
    Zhang, W., Su, J., Tan, C.L., Wang, W.T.: Entity linking leveraging: automatically generated annotation. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 1290–1298. Association for Computational Linguistics (2010)Google Scholar
  107. 107.
    Bunescu, R., Paşca, M.: Using encyclopedic knowledge for named entity disambiguation. In: 11th Conference of the European Chapter of the Association for Computational Linguistics (2006)Google Scholar
  108. 108.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., Van Kleef, P., Auer, S., Bizer, C.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web 6(2), 167–195 (2015)CrossRefGoogle Scholar
  109. 109.
    Ganea, O. E., Hofmann, T.: Deep joint entity disambiguation with local neural attention. arXiv preprint arXiv:1704.04920 (2017)
  110. 110.
    Pershina, M., He, Y., Grishman, R.: Personalized page rank for named entity disambiguation. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 238–243 (2015)Google Scholar
  111. 111.
    Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambiguation: a unified approach. Trans. Assoc. Comput. Linguist. 2, 231–244 (2014)CrossRefGoogle Scholar
  112. 112.
    CIDOC Conceptual Reference Model. http://www.cidoc-crm.org/. Cited by 4 2020
  113. 113.
    Golbeck, J., Rothstein, M.: Linking social networks on the web with FOAF: a semantic web case study. AAAI 8, 1138–1143 (2008)Google Scholar
  114. 114.
    Brickley, D., Miller, L.: FOAF Vocabulary Specification 91, (2007)Google Scholar
  115. 115.
    Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff, M.: Gumo–the general user model ontology. In: International Conference on User Modeling, pp. 428–432. Springer, Berlin, Heidelberg (2005)Google Scholar
  116. 116.
    Díaz-Rodríguez, N., Grönroos, S., Wickström, F., Lilius, J., Eertink, H., Braun, A., Dillen, P., Crowley, J., Alexandersson, J.: An ontology for wearables data interoperability and ambient assisted living application development. In: Recent Developments and the New Direction in Soft-Computing Foundations and Applications, pp. 559–568. Springer, Cham (2018)Google Scholar
  117. 117.
    Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  118. 118.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl reasoner. Web Semant. Sci. Serv. Agents World Wide Web 5(2), 51–53 (2007)Google Scholar
  119. 119.
    Haarslev, V., Möller, R. (2003). Racer: a core inference engine for the semantic web. In: EON, vol. 87Google Scholar
  120. 120.
    Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In: International Joint Conference on Automated Reasoning, pp. 292–297. Springer, Berlin, Heidelberg (2006)Google Scholar
  121. 121.
    Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2 reasoner. J. Autom. Reasoning 53(3), 245–269 (2014)zbMATHCrossRefGoogle Scholar
  122. 122.
    Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: The next step for OWL. Web Semant. Sci. Serv. Agents World Wide Web 6(4), 309–322 (2008)Google Scholar
  123. 123.
    Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., Dean, M. (2004). SWRL: A semantic web rule language combining OWL and RuleML. W3C Member Submission 21(79), 1–31Google Scholar
  124. 124.
    Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Web Semantics Sci. Serv. Agents World Wide Web 3(1), 41–60 (2005)CrossRefGoogle Scholar
  125. 125.
    Rosati, R.: DL+ log: tight integration of description logics and disjunctive datalog. KR 6, 68–78 (2006)Google Scholar
  126. 126.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: Proceedings of the 12th International Conference on World Wide Web, pp. 48–57. ACM (2003)Google Scholar
  127. 127.
    Ter Horst, H.J.: Extending the RDFS entailment lemma. In: International Semantic Web Conference, pp. 77–91. Springer, Berlin, Heidelberg (2004)Google Scholar
  128. 128.
    Harris, S., Seaborne, A.S., Prud’hommeaux, E.S.: 1.1 Query language. W3C Recommendation 21, 10 (2013)Google Scholar
  129. 129.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In: International Semantic Web Conference, pp. 30–43. Springer, Berlin, Heidelberg (2006)Google Scholar
  130. 130.
    Knublauch, H., Hendler, J.A., Idehen, K.: SPIN-overview and motivation. W3C Member Submission 22, W3C (2011)Google Scholar
  131. 131.
    Lenders, V.: Semantic fusion of live web content: system design and implementation experiences. In: 2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF), pp. 1–6. IEEE (2013)Google Scholar
  132. 132.
    Bellenger, A., Lerouvreur, X., Gatepaille, S., Abdulrab, H., Kotowicz, J.P.: An information fusion semantic and service enablement platform: the FusionLab approach. In: 14th International Conference on Information Fusion, pp. 1–8. IEEE (2011)Google Scholar
  133. 133.
    Torre-Bastida, A.I., Villar-Rodriguez, E., Del Ser, J., Gil-Lopez, S.: Semantic information fusion of linked open data and social big data for the creation of an extended corporate CRM database. In: Intelligent Distributed Computing, vol. VIII, pp. 211–221. Springer, Cham (2015)Google Scholar
  134. 134.
    Shape Expressions. http://shex.io/shex-primer/. Cited by 5 2020
  135. 135.
    Shapes Constraint Language. https://www.w3.org/TR/shacl/ Cited by 5 2020
  136. 136.
    Hobbs, J.R., Pan, F.: Time ontology in OWL. W3C Working Draft 27, 133 (2006)Google Scholar
  137. 137.
    Li, S., Chen, S., Liu, Y.: A method of emergent event evolution reasoning based on ontology cluster and Bayesian network. IEEE Access 7, 15230–15238 (2019)CrossRefGoogle Scholar
  138. 138.
    Dell’Aglio, D., Eiter, T., Heintz, F., Le Phuoc, D.: Special issue on stream reasoning. Semantic Web 10(3), 453–455 (2019)CrossRefGoogle Scholar
  139. 139.
    Mobasheri, A.: A rule-based spatial reasoning approach for OpenStreetMap data quality enrichment; case study of routing and navigation. Sensors 17(11), 2498 (2017)CrossRefGoogle Scholar
  140. 140.
    Dashdorj, Z., Sobolevsky, S., Lee, S., Ratti, C.: Deriving human activity from geo-located data by ontological and statistical reasoning. Knowled. Based Syst. 143, 225–235 (2018)CrossRefGoogle Scholar
  141. 141.
    Ferré, S.: Sparklis: an expressive query builder for SPARQL endpoints with guidance in natural language. Semantic Web 8(3), 405–418 (2017)CrossRefGoogle Scholar
  142. 142.
    Bamgboye, O., Liu, X., Cruickshank, P.: Towards modelling and reasoning about uncertain data of sensor measurements for decision support in smart spaces. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 744–749. IEEE (2018)Google Scholar
  143. 143.
    Hadhiatma, A.: Improving data quality in the linked open data: a survey. J. Phys. Conf. Ser. 978(1), 012026. IOP Publishing (2018)Google Scholar
  144. 144.
    Zadeh, L.A.: Information and control. Fuzzy Sets 8, 338–353 (1965)Google Scholar
  145. 145.
    Longo, L.: Argumentation for knowledge representation, conflict resolution, defeasible inference and its integration with machine learning. In: Machine Learning for Health Informatics, pp. 183–208. Springer, Cham (2016)Google Scholar
  146. 146.
    Gegov, A., Gobalakrishnan, N., Sanders, D.: Rule base compression in fuzzy systems by filtration of non-monotonic rules. J. Intell. Fuzzy Syst. 27(4), 2029–2043 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  147. 147.
    Cuong, N.D.H., Arch-Int, N., Arch-Int, S.: FUSE: a fuzzy-semantic framework for personalizing learning recommendations. Int. J. Inf. Technol. Decis. Making 17(04), 1173–1201 (2018)zbMATHCrossRefGoogle Scholar
  148. 148.
    D’Onofrio, S., Müller, S.M., Papageorgiou, E.I., Portmann, E.: Fuzzy reasoning in cognitive cities: an exploratory work on fuzzy analogical reasoning using fuzzy cognitive maps. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2018)Google Scholar
  149. 149.
    Yazdanpanah, V., Dastani, M., Jamroga, W., Alechina, N., Logan, B.: Strategic responsibility under imperfect information. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 592–600. International Foundation for Autonomous Agents and Multiagent Systems (2019)Google Scholar
  150. 150.
    Bulling, N., Jamroga, W., Popovici, M.: Reasoning about strategic abilities: agents with truly perfect recall. ACM Trans. Comput. Logic (TOCL) 20(2), 10 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  151. 151.
    Murano, A., Parente, M., Rubin, S., Sorrentino, L.: Model-checking graded computation-tree logic with finite path semantics. Theoret. Comput. Sci. 806, 577–586 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  152. 152.
    Web of Things (WoT) Architecture. https://www.w3.org/TR/wot-architecture/. Cited by 7 Jan 2020
  153. 153.
    Pfisterer, D., Romer, K., Bimschas, D., Kleine, O., Mietz, R., Truong, C., Hasemann, H., Krø’ller, A., Pagel, M., Hauswirth, M., Karnstedt, M.: SPITFIRE: toward a semantic web of things. IEEE Commun. Mag. 49(11), 40–48 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Centre For Research and Technology Hellas (CERTH)Information Technologies InstituteThessalonikiGreece

Personalised recommendations