How to Understand Better “Smart Vehicle”? Knowledge Extraction for the Automotive Sector Using Web of Things

Part of the Studies in Computational Intelligence book series (SCI, volume 941)


How to understand better the knowledge provided by Google results to build future “smart vehicle-centric” applications? What is the knowledge expertise required to build a smart vehicle application (e.g., driver assistance system)? Automotive companies (e.g., Toyota, BMW, Renault) are employing Internet of Things (IoT) and Semantic Web technologies to model the automotive sector. We aggregate this “common sense knowledge” in a automotive dataset which comprises 42 semantics-based projects between 2005 and 2019. The knowledge is already encoded with knowledge representation languages (e.g., RDF, RDFS, and OWL) and supported by the World Wide Web Consortium (W3C). However, only a subset of those projects share their expertise by publishing their ontologies online. For this reason, at the current time or writing, only 16 ontologies are processable. Our innovative Knowledge Extraction for the Automotive Sector (KEAS) methodology analyzes what are the most popular terms required to build a smart car, it provides: (1) a set of keyphrase that are synonyms to smart cars to find domain-specific knowledge, (2) synonyms are used to build a corpus of scientific publications to train the k-means machine learning algorithm, (3) a dataset of smart car ontologies that we collected, is analyzed by the k-means algorithm, and (4) the extraction of the most common terms from the ontology dataset for the automotive sector. Our KEAS findings can be used as a starting point for further domain-specific investigations (e.g., Volvo willing to integrate semantic web) and for future information extraction from structured knowledge.


Internet of Things (IoT) Knowledge directory service Semantic ontology interoperability Ontology validation Reusability Semantic Web of Things (SWoT) Semantic web technologies Reusable knowledge 



This work has partially received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 857237 (Interconnect). The opinions expressed are those of the authors and do not reflect those of the sponsors.


  1. 1.
    Zhao, L., Ichise, R., Mita, S., Sasaki, Y.: An ontology-based intelligent speed adaptation system for autonomous cars. In: Joint International Semantic Technology Conference (Conference rank not found). Springer (2014)Google Scholar
  2. 2.
    Klotz, B., Troncy, R., Wilms, D., Bonnet, C.: VSSo—a vehicle signal and attribute ontology (Short Paper). In: SSN Workshop at ISWC. CEUR Workshop Proceedings(2018)Google Scholar
  3. 3.
    Gyrard, A., Bonnet, C., Boudaoud, K.: Ontology-based intelligent transportation systems. In: BMW Summer School 2014, Autonomous Driving in the Internet of Cars (2014). [Online]. Available:
  4. 4.
    Klotz, B., Troncy, R., Wilms, D., Bonnet, C.: Generating semantic trajectories using a car signal ontology. In: The Web Conference. WWW, A-rank Conference (2018)Google Scholar
  5. 5.
    Klotz, B., Datta, S.K., Wilms, D., Troncy, R., Bonnet, C.: A car as a semantic web thing: motivation and demonstration. In: Global IoT Summit GIoTS, colocated with the IoT Week (2018)Google Scholar
  6. 6.
    Armand, A., Filliat, D., Ibañez-Guzman, J.: Ontology-based context awareness for driving assistance systems. In: Intelligent Vehicles Symposium (IEEE IV, B-rank conference). IEEE (2014)Google Scholar
  7. 7.
    Katsumi, M., Fox, M.: Ontologies for transportation research: a survey. Elsevier Transp. Res. Part C Emerg. Technol. J. (IF: 5.775 in 2018) (2018)Google Scholar
  8. 8.
    Villalba, J.B.: Using Ontologies and Intelligent Systems for Traffic Accident Assistance in Vehicular Environments. Ph.D. dissertation (2014)Google Scholar
  9. 9.
    Noura, M., Gyrard, A., Heil, S., Gaedke, M.: Concept extraction from the web of things knowledge bases. In: International Conference WWW/Internet 2018. Elsevier, Outstanding Paper Award (2018)Google Scholar
  10. 10.
    Wetterwald, M.: Slides: towards a SAREF extension for automotive. In: W3C Workshop on Data Models for TransportationGoogle Scholar
  11. 11.
    Puiu, D., Barnaghi, P., Toenjes, R., Kümper, D., Ali, M.I., Mileo, A., Parreira, J.X., Fischer, M., Kolozali, S., Farajidavar, N., et al.: Citypulse: large scale data analytics framework for smart cities. IEEE Access (2016)Google Scholar
  12. 12.
    Kolozali, S., Bermudez-Edo, M., Puschmann, D., Ganz, F., Barnaghi, P.: A knowledge-based approach for real-time iot data stream annotation and processing. In: IEEE iThings Conference (2014)Google Scholar
  13. 13.
    Pollard, E., Morignot, P., Nashashibi, F.: An ontology-based model to determine the automation level of an automated vehicle for co-driving. In: International Conference on Information Fusion (2013)Google Scholar
  14. 14.
    Zhao, L., Ichise, R., Yoshikawa, T., Naito, T., Kakinami, T., Sasaki, Y.: Ontology-based decision making on uncontrolled intersections and narrow roads. In: IEEE Intelligent Vehicles Symposium (IV). IEEE (2015)Google Scholar
  15. 15.
    Zhao, L., Ichise, R., Mita, S., Sasaki, Y.: Core ontologies for safe autonomous driving. In: International Semantic Web Conference (Posters & Demos). ISWC, A-rank conference (2015)Google Scholar
  16. 16.
    Zhao, L., Ichise, R., Mita, S., Sasaki, Y.: Ontologies for advanced driver assistance systems. In: The 35th Semantic Web & Ontology Workshop (SWO) (2015)Google Scholar
  17. 17.
    Lécué, F., Tallevi-Diotallevi, S., Hayes, J., Tucker, R., Bicer, V., Sbodio, M.L., Tommasi, P.: Star-city: semantic traffic analytics and reasoning for city. In: Proceedings of the 19th international conference on intelligent user interfaces. ACM (2014)Google Scholar
  18. 18.
    Ruta, M., Scioscia, F., Gramegna, F., Di Sciascio, E.: A mobile knowledge-based system for on-board diagnostics and car driving assistance. In: International conference on mobile ubiquitous computing, systems, services and technologies (UBICOMM, B-rank conference). Citeseer (2010)Google Scholar
  19. 19.
    Ruta, M., Scioscia, F., Gramegna, F., Loseto, G., Di Sciascio, E.: Knowledge-based real-time car monitoring and driving assistance. In: SEBD. Citeseer (2012)Google Scholar
  20. 20.
    M. Ruta, F. Scioscia, G. Loseto, A. Pinto, and E. Di Sciascio, “Machine Learning in the Internet of Things: a Semantic-enhanced Approach,” Semantic Web Journal, 2017Google Scholar
  21. 21.
    A. I. Maarala, X. Su, and J. Riekki, “Semantic reasoning for context-aware internet of things applications,” IEEE Internet of Things Journal, 2017Google Scholar
  22. 22.
    Bermejo, A., Villadangos, J., Astrain, J., Cordoba, A.: Ontology based road traffic management. In: Intelligent Distributed Computing VI. Springer (2013)Google Scholar
  23. 23.
    Corsar, D., Markovic, M., Edwards, P., Nelson, J.D.: The transport disruption ontology. In: International Semantic Web Conference (ISWC, A-rank Conference). Springer (2015)Google Scholar
  24. 24.
    Codescu, M., Horsinka, G., Kutz, O., Mossakowski, T., Rau, R.: Osmonto—an Ontology of OpenStreetMap tags. In: State of the Map Europe (SOTM-EU) (2011)Google Scholar
  25. 25.
    Fuchs, S., Rass, S., Lamprecht, B., Kyamakya, K.: A model for ontology-based scene description for context-aware driver assistance systems. In: Proceedings of the 1st International Conference on Ambient Media and Systems (2008)Google Scholar
  26. 26.
    Fuchs, S., Rass, S., Kyamakya, K: Integration of ontological scene representation and logic-based reasoning for context-aware driver assistance systems. In: Electronic Communications of the EASST (2008)Google Scholar
  27. 27.
    Fernandez, S., Ito, T.: Using SSN ontology for automatic traffic light settings on intelligent transportation systems. In: IEEE International Conference on Agents (ICA). IEEE (2016)Google Scholar
  28. 28.
    Barrachina, J., Garrido, P., Fogue, M., Martinez, F.J., Cano, J.-C., Calafate, C.T., Manzoni, P.: CAOVA: a car accident ontology for VANETs. In: IEEE Wireless Communications and Networking Conference (WCNC, A-rank conference). IEEE (2012)Google Scholar
  29. 29.
    Barrachina, J., Garrido, P., Fogue, M., Martinez, F.J., et al.: VEACON: a vehicular accident ontology designed to improve safety on the roads. Elsevier J. Netw. Comput. Appl. (IF: 5.273 in 2018) (2012)Google Scholar
  30. 30.
    Stocker, M., Rönkkö, M., Kolehmainen, M.: Making Sense of Sensor Data Using Ontology: A Discussion for Road Vehicle Classification (2012)Google Scholar
  31. 31.
    Stocker, M., Rönkkö, M., et al.: Situational knowledge representation for traffic observed by a pavement vibration sensor network. Trans. Intell. Transp. Syst. (2014)Google Scholar
  32. 32.
    Ebers, S., Hellbuck, H., Pfisterer, D., Fischer, S.: Short paper: collaboration Between VANET applications based on open standards. In: Vehicular Networking Conference (VNC, B-rank conference). IEEE (2013)Google Scholar
  33. 33.
    De Oliveira, K.M., Bacha, F., Mnasser, H., Abed, M.: Transportation ontology definition and application for the content personalization of user interfaces. Elsevier Expert Syst. Appl. J. (IF: 4.292 in 2018) (2013)Google Scholar
  34. 34.
    Zidi, A., Abed, M.: A generalized framework for ontology-based information retrieval: application to a public-transportation system. In: International Conference on Advanced Logistics and Transport (ICALT, B-Rank Conference). IEEE (2013)Google Scholar
  35. 35.
    Mnasser, H., Gargouri, F., Abed, M.: Towards an intelligent information system of public transportation. In: International Conference on Advanced Logistics and Transport (ICALT, B-Rank Conference). IEEE (2013)Google Scholar
  36. 36.
    Houda, M., Khemaja, M., Oliveira, K., Abed, M.: A public transportation ontology to support user travel planning. In: International Conference on Research Challenges in Information Science (RCIS, B-Rank Conference). IEEE (2010)Google Scholar
  37. 37.
    Li, G., Ma, D., Loua, V.: Fuzzy ontology based knowledge reasoning framework design. In: International Conference on Software Engineering and Service Science (ICSESS, Ranking Not Found). IEEE (2012)Google Scholar
  38. 38.
    Calavia, L., Baladrón, C., Aguiar, J.M., Carro, B., Sánchez-Esguevillas, A.: A semantic autonomous video surveillance system for dense camera networks in smart cities. Sensors (2012)Google Scholar
  39. 39.
    Madkour, M., Maach, A.: Ontology-based context modeling for vehicle context-aware services. J. Theor. Appl. Inf. Technol. (2011)Google Scholar
  40. 40.
    Hamilton, A., González, E.J., Acosta, L., Arnay, R., Espelosín, J.: Semantic-based approach for route determination and ontology updating. Eng. Appl. Artif. Intell. (2013)Google Scholar
  41. 41.
    Feld, M., Müller, C.: The automotive ontology: managing knowledge inside the vehicle and sharing it between cars. In: International Conference on Automotive User Interfaces and Interactive Vehicular Applications (Conference Rank Not Found). ACM (2011)Google Scholar
  42. 42.
    Wang, J., Wang, X.: An ontology-based traffic accident risk mapping framework. In: International Symposium on Spatial and Temporal Databases. Springer (2011)Google Scholar
  43. 43.
    Hülsen, M., Zöllner, J.M., Weiss, C.: Traffic intersection situation description ontology for advanced driver assistance. In: Intelligent Vehicles Symposium (IV). IEEE (2011)Google Scholar
  44. 44.
    Berdier, C.: Road system ontology: organisation and feedback. In: Ontologies in Urban Development Projects. Springer (2011)Google Scholar
  45. 45.
    Kannan, S., Thangavelu, A., Kalivaradhan, R.: An intelligent driver assistance system (I-DAS) for vehicle safety modelling using ontology approach. In: International Journal of UbiComp. UbiComp, A-Rank Conference (2010)Google Scholar
  46. 46.
    Baumgartner, N., Gottesheim, W., Mitsch, S., Retschitzegger, W., Schwinger, W.: BeAware!—situation awareness, the ontology-driven way. Elsevier Data Knowl. Eng. J. (IF: 1.583 in 2018) (2010)Google Scholar
  47. 47.
    Liu, C.-H., Chang, K.-L., Chen, J.J.-Y., Hung, S.-C.: Ontology-based context representation and reasoning using OWL and SWRL. In: Conference on Communication Networks and Services Research (CNSR, B-Rank conference). IEEE (2010)Google Scholar
  48. 48.
    Niaraki, A.S, Kim, K.: Ontology based personalized route planning system using a multi-criteria decision making approach. Elsevier Expert Syst. Appl. J. (IF: 4.292 in 2018) (2009)Google Scholar
  49. 49.
    Yue, D., Wang, S., Zhao, A.: Traffic accidents knowledge management based on ontology. In: International Conference on Fuzzy Systems and Knowledge Discovery (FSKD, B-Rank conference). IEEE (2009)Google Scholar
  50. 50.
    Zhai, J., Chen, Y., Yu, Y., Liang, Y., Jiang, J.: Fuzzy semantic retrieval for traffic information based on fuzzy ontology and RDF on the semantic web. JSW (2009)Google Scholar
  51. 51.
    Sun, J., Wu, Z.-h., Pan, G.: Context-aware smart car: from model to prototype. Springer J. Zhejiang Univ.-Sci. A (2009)Google Scholar
  52. 52.
    Belhadef, H., Kholladi, M.: Urban ontology-based geographical information system. J. Theor. Appl. Inf. Technol. (2009)Google Scholar
  53. 53.
    Regele, R.: Using ontology-based traffic models for more efficient decision making of autonomous vehicles. In: International Conference on Autonomic and Autonomous Systems (ICAS, B-Rank conference). IEEE (2008)Google Scholar
  54. 54.
    Eigner, R., Lutz, G.: Collision avoidance in VANETs—an application for ontological context models. In: International Conference on Pervasive Computing and Communications (PerCom, A-Rank Conference). IEEE (2008)Google Scholar
  55. 55.
    Cheng, G., Du, Q., Ma, H.: The design and implementation of ontology and rules based knowledge base for transportation. In: International Conference on Computer Science and Software Engineering (CASCON, B-Rank conference). IEEE (2008)Google Scholar
  56. 56.
    Hu, Y., Wu, Z., Guo, M.: Ontology driven adaptive data processing in wireless sensor networks. In: International Conference on Scalable Information Systems. ICST (Institute for Computer Sciences, Social-Informatics) (2007)Google Scholar
  57. 57.
    Lorenz, B., Ohlbach, H.J., Yang, L.: Ontology of Transportation Networks (2005)Google Scholar
  58. 58.
    Budgen, D., Brereton, .: Performing systematic literature reviews in software engineering. In: International Conference on Software Engineering. ACM (2006)Google Scholar
  59. 59.
    Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M., Niazi, M., Linkman, S.: Systematic literature reviews in software engineering—a tertiary study. Inf. Softw. Technol. (2010)Google Scholar
  60. 60.
    Rizzo, G., Tomassetti, F., Vetro, A., Ardito, L., Torchiano, M., Morisio, M., Troncy, R.: Semantic enrichment for recommendation of primary studies in a systematic literature review. Digit. Scholarship Humanit. (2017)Google Scholar
  61. 61.
    Noura, M., Gyrard, A., Heil, S., Gaedke, M.: Automatic Knowledge Extraction to Build Semantic Web of Things Applications (2019)Google Scholar
  62. 62.
    Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., et al.: The ssn ontology of the w3c semantic sensor network incubator group. Sci. Serv. Agents World Wide Web Web Semant. (2012)Google Scholar
  63. 63.
    Haller, A., Janowicz, K., Cox, S., Le Phuoc, D., Taylor, K., Lefrançois, M.: Semantic Sensor Network Ontology. W3C Recommendation (2017). [Online]. Available:
  64. 64.
    Daniele, L., Solanki, M., den Hartog, F., Roes, J.: Interoperability for smart appliances in the iot world. In: International Semantic Web Conference. Springer (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Technische Universitat ChemnitzChemnitzGermany
  2. 2.Kno.e.sis, Wright State UniversityDaytonUSA
  3. 3.EURECOM, Sophia AntipolisBiotFrance
  4. 4.TrialogParisFrance

Personalised recommendations