Skip to main content

SAGRO-Lite: A Light Weight Agent Based Semantic Model for the Internet of Things for Smart Agriculture in Developing Countries

  • Chapter
  • First Online:
Book cover Semantic IoT: Theory and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 941))

Abstract

The recent advancement of the Internet of Things (IoT) has led to the possibilities to process a large number of sensor data streams built upon large-scale IoT platforms. In developed countries IoT is already emerged successfully as a reasonable technique assuring the goal of self-complacency, hybrid and advanced decisions and computerization in the horticulture industry. Instant adoption of IoT in farming is impractical in developing nations because of less literacy, hesitance towards technology, smaller farm sizes and high cost of IoT farming solutions. Through a light weight IOT specifically focused on farming style of developing countries like India, farmers can increase their quality of farming by the use of this technology. The authors have developed a semantically enriched agent based model called Agent Based Semantic Model for Smart Agriculture, ABSMSA which uses SAGRO-Lite, a light weight ontology designed by the authors for specific farming characteristics in developing countries. The system uses two more ontologies the IoT-Lite and Complex Event Service Ontology (CESO) for semantic sensing and event recognition and handling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Google Scholar 

  2. Ray, P.P.: A survey on internet of things architectures. J. King Saud Univ.-Comput. Inf. Sci. 30(3), 291–319 (2018)

    Google Scholar 

  3. Elijah, O., et al.: An overview of Internet of Things (IoT) and data analytics in agriculture: benefits and challenges. IEEE Internet Things J. 5(5), 3758–3773 (2018)

    Google Scholar 

  4. Khanna, A., Kaur, S.: Evolution of Internet of Things (IoT) and its significant impact in the field of precision agriculture. Comput. Electron. Agric. 157, 218–231 (2019)

    Google Scholar 

  5. Luthra, S., et al.: Internet of Things (IoT) in agriculture supply chain management: a developing country perspective. In: Emerging Markets from a Multidisciplinary Perspective, pp. 209–220. Springer, Cham (2018)

    Google Scholar 

  6. Chandra, A., McNamara, K.E., Dargusch, P.: Climate-smart agriculture: perspectives and framings. Clim. Policy 18(4), 526–541 (2018)

    Article  Google Scholar 

  7. Lipper, L., et al.: Climate smart agriculture. Nat. Resour. Manag. Policy 52, 2018 (2018)

    Google Scholar 

  8. Salam, A., Shah, S.: Internet of things in smart agriculture: enabling technologies. (2019)

    Google Scholar 

  9. Vuran, M.C., et al.: Internet of underground things in precision agriculture: architecture and technology aspects. Ad Hoc Netw. 81, 160–173 (2018)

    Google Scholar 

  10. Keswani, B., et al.: Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms. Neural Comput. Appl. 31(1), 277–292 (2019)

    Google Scholar 

  11. Agoramoorthy, G.: Can India meet the increasing food demand by 2020? Futures 40(5), 503–506 (2008)

    Article  Google Scholar 

  12. Reddy, D.N., Mishra, S. (eds.): Agrarian Crisis in India. Oxford University Press, Oxford (2010)

    Google Scholar 

  13. Walter, A., et al.: Opinion: smart farming is key to developing sustainable agriculture. Proc. Natl. Acad. Sci. 114(24), 6148–6150 (2017)

    Google Scholar 

  14. Kpadonou, R.A.B., et al.: Advancing climate-smart-agriculture in developing drylands: joint analysis of the adoption of multiple on-farm soil and water conservation technologies in West African Sahel. Land Use Policy 61, 196–207 (2017)

    Google Scholar 

  15. Lakhwani, K., et al.: Development of IoT for smart agriculture a review. In: Emerging Trends in Expert Applications and Security, pp. 425–432. Springer, Singapore (2019)

    Google Scholar 

  16. Bermudez-Edo, M., et al.: IoT-Lite: a lightweight semantic model for the internet of things. In: 2016 International IEEE Conferences on Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), IEEE (2016)

    Google Scholar 

  17. Jara, A.J., et al.: Semantic web of things: an analysis of the application semantics for the iot moving towards the iot convergence. Int. J. Web Grid Serv. 10(2–3), 244–272 (2014)

    Google Scholar 

  18. Maliappis, M.T.: Applying an agricultural ontology to web-based applications. Int. J. Metadata Semant. Ontol. 4(1-2), 133–140 (2009)

    Article  Google Scholar 

  19. Beck, H.W., Kim, S., Hagan, D.: A crop-pest ontology for extension publications. Proceedings (2005)

    Google Scholar 

  20. Wang, Y., et al.: An ontology-based approach to integration of hilly citrus production knowledge. Comput. Electron. Agric. 113, 24–43 (2015)

    Google Scholar 

  21. Xie, N., Wang, W., Yang, Y.: Ontology-based agricultural knowledge acquisition and application. In: International Conference on Computer and Computing Technologies in Agriculture. Springer, Boston, MA (2007)

    Google Scholar 

  22. Arjun, K.M.: Indian agriculture-status, importance and role in Indian economy. Int. J. Agric. Food Sci. Technol. 4(4), 343–346 (2013)

    Google Scholar 

  23. Reich, D., et al.: Reconstructing Indian population history. Nature 461(7263), 489 (2009)

    Google Scholar 

  24. Chaurasia, V.B., Singh, M.: Step towards the improvement of Indian agriculture. In: 14th Annual Conference, pp. 61 (2018)

    Google Scholar 

  25. Bhojani, S.H., Patel, A.R.: Information technology: an arising concept in agriculture sector. J. Comput. Technol. Appl. 4(1), 23–27 (2019)

    Google Scholar 

  26. Kumar, Y., Singh, P.K.: To study the influence of insurance policy on the agriculture field and Indian economy: concept paper. In: Renewable Energy and its Innovative Technologies, pp. 13–24. Springer, Singapore (2019)

    Google Scholar 

  27. Verma, C., Pandey, R.: Big data representation for grade analysis through Hadoop framework. In: 2016 6th International Conference-Cloud System and Big Data Engineering (Confluence), IEEE (2016)

    Google Scholar 

  28. Kotwal, A., Ramaswami, B., Wadhwa, W.: Economic liberalization and Indian economic growth: what’s the evidence?. J. Econ. Lit. 49(4), 1152–99 (2011)

    Google Scholar 

  29. Pandey, R., Dwivedi, S.: Ontology description using owl to support semantic web applications. Int. J. Comput. Appl. 14(4), 30–33 (2011)

    Google Scholar 

  30. Postel, S., et al.: Drip irrigation for small farmers: a new initiative to alleviate hunger and poverty. Water Int. 26(1), 3–13 (2001)

    Google Scholar 

  31. Pandey, R., Dwivedi, S.: Interoperability between semantic web layers: a communicating agent approach. Int. J. Comput. Appl. 12(3), 0975–8887 (2010)

    Google Scholar 

  32. Pandey, M., Pandey, R.: JSON and its use in semantic web. Int. J. Comput. Appl. 164(11), 10–16 (2017)

    Google Scholar 

  33. Kuruvilla, A., Jacob, K.S.: Poverty, social stress and mental health. Indian J. Med. Res. 126(4), 273 (2007)

    Google Scholar 

  34. Kumari, Sneha, et al. “Sparql: semantic information retrieval by embedding prepositions. Int. J. Netw. Secur. Appl. 6(1), 49 (2014)

    Google Scholar 

  35. Pandey, R., Dwivedi, S.: RDF/RDF-S providing framework support to OWL ontologies. Int. J. Comput. Sci. Inf. Technol. 3(4) (2012)

    Google Scholar 

  36. Jagannathan, S., Priyatharshini, R.: Smart farming system using sensors for agricultural task automation. In: 2015 IEEE Technological Innovation in ICT for Agriculture and Rural Development (TIAR), IEEE (2015)

    Google Scholar 

  37. Channe, H., Kothari, S., Kadam, D.: Multidisciplinary model for smart agriculture using internet-of-things (IoT), sensors, cloud-computing, mobile-computing and big-data analysis. Int. J. Comput. Technol. Appl. 6(3), 374–382 (2015)

    Google Scholar 

  38. Khatri-Chhetri, A., et al.: Farmers’ prioritization of climate-smart agriculture (CSA) technologies. Agric. Syst. 151, 184–191 (2017)

    Google Scholar 

  39. Patil, A., et al.: Smart farming using Arduino and data mining. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), IEEE (2016)

    Google Scholar 

  40. Auernhammer, H.: Precision farming—the environmental challenge. Comput. Electron. Agric. 30(1-3), 31–43 (2001)

    Article  Google Scholar 

  41. Katyal, N., Pandian, B.J.: A comparative study of conventional and smart farming. In: Emerging Technologies for Agriculture and Environment, pp. 1–8. Springer, Singapore (2020)

    Google Scholar 

  42. Bronson, K.: Looking through a responsible innovation lens at uneven engagements with digital farming. NJAS-Wageningen J. Life Sci. (2019)

    Google Scholar 

  43. Carolan, M.: Publicising food: big data, precision agriculture, and co‐experimental techniques of addition. Sociologia Ruralis 57(2), 135–154 (2017)

    Google Scholar 

  44. Popović, T., et al.: Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: a case study. Comput. Electron. Agric. 140, 255–265 (2017)

    Google Scholar 

  45. Atzori, L., Iera, A., Morabito, G.: Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Netw. 56, 122–140 (2017)

    Google Scholar 

  46. Kamilaris, A., et al.: Agri-IoT: a semantic framework for Internet of Things-enabled smart farming applications. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), IEEE (2016)

    Google Scholar 

  47. Ilapakurti, A., Vuppalapati, C.: Building an IoT framework for connected dairy. In: 2015 IEEE First International Conference on Big Data Computing Service and Applications, IEEE (2015)

    Google Scholar 

  48. Madsen, S.L., et al.: Quantifying behaviour of dairy cows via multi-stage support vector machines: book of proceedings. In: 8th European Conference on Precision Livestock Farming (2017)

    Google Scholar 

  49. Sinha, R.S., Wei, Y., Hwang, S.-H.: A survey on LPWA technology: LoRa and NB-IoT. Ict Express 3(1), 14–21 (2017)

    Article  Google Scholar 

  50. Pham, C., Rahim, A., Cousin, P.: Low-cost, long-range open IoT for smarter rural African villages. In: 2016 IEEE International Smart Cities Conference (ISC2), IEEE (2016)

    Google Scholar 

  51. Shaikh, F.K., Zeadally, S.: Energy harvesting in wireless sensor networks: a comprehensive review. Renew. Sustain. Energy Rev. 55, 1041–1054 (2016)

    Google Scholar 

  52. Wen, Z., et al.: Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2(10), e1600097 (2016)

    Google Scholar 

  53. Francesco, A.,et al.: Combined finite–discrete numerical modeling of runout of the Torgiovannetto di Assisi rockslide in central Italy. Int. J. Geomech. 16(6), 04016019 (2016)

    Google Scholar 

  54. Wong, B.P., Kerkez, B.: Real-time environmental sensor data: an application to water quality using web services. Environ. Model. Softw. 84, 505–517 (2016)

    Google Scholar 

  55. Murphy, E., et al.: Diet of stoats at Okarito Kiwi Sanctuary, South Westland, New Zealand. N. Z. J. Ecol. 41–45 (2008)

    Google Scholar 

  56. Singh, H., Sarangi, S.C., Gupta, Y.K.: French Phase I clinical trial disaster: issues, learning points, and potential safety measures. J. Nat. Sci. Biol. Med. 9(2), 106 (2018)

    Google Scholar 

  57. Ruan, J., Shi, Y.: Monitoring and assessing fruit freshness in IOT-based e-commerce delivery using scenario analysis and interval number approaches. Inf. Sci. 373, 557–570 (2016)

    Article  Google Scholar 

  58. Liu, Y., et al.: An Internet-of-Things solution for food safety and quality control: a pilot project in China. J. Ind. Inf. Integr. 3, 1–7 (2016)

    Google Scholar 

  59. Kant, G.S., Singh, V.K., Darbari, M.: Legal semantic web-a recommendation system. IJAIS 7(3) (2014)

    Google Scholar 

  60. Mishra, S.K., Singh, V.K., Shankhdhar, G.K.: Ontology development for wheat information system. IJRET-Int. J. Res. Eng. Technol. 04(05) (2015)

    Google Scholar 

  61. Verma, A., Shankhdhar, G.K., Darbari, M.: Verified message exchange in providing security for cloud computing in heterogeneous and dynamic environment. Int. J. Appl. Inf. Syst. 11(10), 15–18 (2017)

    Google Scholar 

  62. Garcia-Ojeda, J.C., et al.: O-MaSE: a customizable approach to developing multiagent development processes. In: International Workshop on Agent-Oriented Software Engineering. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  63. Shankhdhar, G.K., Verma, A., Singh, V.K., Darbari, M., Singh, V.: Application of IOT in electrical grid. IOSR J. Eng. ISSN (e): 2250–3021, ISSN (p): 2278-8719 08(4), 01–03 (2018)

    Google Scholar 

  64. Shankhdhar, G.K., Darbari, M.: Building custom, adaptive and heterogeneous multi-agent systems for semantic information retrieval using organizational-multi-agent systems engineering, O-MaSE. IEEE Explore, ISBN: 978-1-5090-3480-2 (2016)

    Google Scholar 

  65. Gao, F., Ali, M.I., Mileo, A.: Semantic discovery and integration of urban data streams⋆. Challenge 7, 16 (2014)

    Google Scholar 

  66. Shankhdhar, G.K., Darbari, M.: Introducing two level verification model for reduction of uncertainty of message exchange in inter agent communication in organizational-multi-agent systems engineering, O-MaSE. Int. Organ. Sci. Res. (2017). https://doi.org/10.9790/0661-1904020818

  67. Shankhdhar, G.K., Darbari, M.: Integrating COCOMO II model in O-MaSE methodology for estimating effort in building heterogeneous and dynamic multi-agent systems. Sci. Eng. Res. Support Soc. Int. J. Softw. Eng. Appl. 29–40

    Google Scholar 

  68. Shankhdhar, G.K., Darbari, M.: Implementation of validation of requirements in agent development by means of ontology. Int. J. Comput. Sci. Eng. 6, 1129–1135 (2018). https://doi.org/10.26438/ijcse/v6i7.11291135

  69. DeLoach, S.A., Garcia-Ojeda, J.C.: The o-masemethodology. In: Handbook on Agent-Oriented Design Processes, pp. 253–285. Springer, Berlin, Heidelberg (2014)

    Google Scholar 

  70. Garcia-Ojeda, J.C., DeLoach, S.A.: agentTool III: from process definition to code generation. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems-Volume 2. International Foundation for Autonomous Agents and Multiagent Systems (2009)

    Google Scholar 

  71. Agarwal, R., et al.: Unified IoT ontology to enable interoperability and federation of testbeds. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), IEEE (2016)

    Google Scholar 

  72. Seydoux, N., et al.: IoT-O, a core-domain IoT ontology to represent connected devices networks. In: European Knowledge Acquisition Workshop. Springer, Cham (2016)

    Google Scholar 

  73. Compton, M., et al.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semant. Sci. Serv. Agents World Wide Web 17, 25–32 (2012)

    Google Scholar 

  74. Caracciolo, C., et al.: The AGROVOC linked dataset. Semant. Web 4(3), 341–348 (2013)

    Google Scholar 

  75. Lauser, B., et al.: From AGROVOC to the agricultural ontology service/concept server. An OWL model for creating ontologies in the agricultural domain. In: Dublin Core Conference Proceedings. Dublin Core DCMI (2006)

    Google Scholar 

  76. Hu, S., et al.: AgOnt: ontology for agriculture internet of things. In: International Conference on Computer and Computing Technologies in Agriculture. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  77. Barbieri, D.F., et al.: C-SPARQL: SPARQL for continuous querying. In: Te 18th international conference on World wide web-WWW’09 (2009)

    Google Scholar 

  78. Dao-Tran, Minh, and Danh Le Phuoc. “Towards Enriching CQELS with Complex Event Processing and Path Navigation.”HiDeSt@ KI. 2015

    Google Scholar 

  79. Fulton, M., Giannakas, K.: Organizational commitment in a mixed oligopoly: agricultural cooperatives and investor-owned firms. Am. J. Agric. Econ. 83(5), 1258–1265 (2001)

    Google Scholar 

  80. Patnaik, U.: Unbalanced growth, tertiarization of the Indian economy and implications for mass living standards. In: Towards Progressive Fiscal Policy in India. Sage Publications, New Delhi, pp. 299–325 (2011)

    Google Scholar 

  81. Pandey, R., Saxena, P., Tripathi, S.: Data interpretation for social network using R API. In: 2018 8th International Conference on Communication Systems and Network Technologies (CSNT), IEEE (2018)

    Google Scholar 

  82. Verma, C., Pandey, R.: Mobile cloud computing integrating cloud, mobile computing, and networking services through virtualization. In: Design and Use of Virtualization Technology in Cloud Computing. IGI Global, 140–160 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuj Darbari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shankhdhar, G.K., Sharma, R., Darbari, M. (2021). SAGRO-Lite: A Light Weight Agent Based Semantic Model for the Internet of Things for Smart Agriculture in Developing Countries. In: Pandey, R., Paprzycki, M., Srivastava, N., Bhalla, S., Wasielewska-Michniewska, K. (eds) Semantic IoT: Theory and Applications. Studies in Computational Intelligence, vol 941. Springer, Cham. https://doi.org/10.1007/978-3-030-64619-6_12

Download citation

Publish with us

Policies and ethics