Skip to main content

Learning Categories with Spiking Nets and Spike Timing Dependent Plasticity

  • Conference paper
  • First Online:
Artificial Intelligence XXXVII (SGAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12498))

Abstract

An exploratory study of learning a neural network for categorisation shows that commonly used leaky integrate and fire neurons and Hebbian learning can be effective. The system learns with a standard spike timing dependent plasticity Hebbian learning rule. A two layer feed forward topology is used with a presentation mechanism of inputs followed by outputs a simulated ms. later to learn Iris flower and Breast Cancer Tumour Malignancy categorisers. An exploration of parameters indicates how this may be applied to other tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code can be found on http://www.cwa.mdx.ac.uk/NEAL/NEAL.html.

References

  1. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  2. Belavkin, R., Huyck, C.: Conflict resolution and learning probability matching in a neural cell-assembly architecture. Cogn. Syst. Res. 12, 93–101 (2010)

    Article  Google Scholar 

  3. Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)

    Article  Google Scholar 

  4. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)

    Article  Google Scholar 

  5. Davison, A., Yger, P., Kremkow, J., Perrinet, L., Muller, E.: PyNN: towards a universal neural simulator API in python. BMC Neurosci. 8(S2), P2 (2007)

    Article  Google Scholar 

  6. Gewaltig, M., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

  7. Hebb, D.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  8. Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  9. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  10. Huyck, C.R., Mitchell, I.G.: Post and pre-compensatory Hebbian learning for categorisation. Cogn. Neurodyn. 8(4), 299–311 (2014). https://doi.org/10.1007/s11571-014-9282-4

    Article  Google Scholar 

  11. Rumelhart, D., McClelland, J.: Parallel Distributed Processing. MIT Press, Cambridge (1986)

    Book  Google Scholar 

  12. Sejnowski, T., Koch, C., Churchland, P.: Computataional neuroscience. Science 241(4871), 1299–1306 (1988)

    Article  Google Scholar 

  13. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550, 354–59 (2017)

    Article  Google Scholar 

  14. Song, S., Miller, K., Abbott, L.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919–926 (2000)

    Article  Google Scholar 

  15. Sun, Y., Liang, D., Wang, X., Tang, X.: DeepID3: face recognition with very deep neural networks. CoRR abs/1502.00873 (2015)

  16. Wade, J., McDaid, L., Santos, J., Sayers, H.: SWAT: a spiking neural network training algorithm for classification problems. IEEE Trans. Neural Netw. 21(11), 1817–1830 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Huyck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huyck, C. (2020). Learning Categories with Spiking Nets and Spike Timing Dependent Plasticity. In: Bramer, M., Ellis, R. (eds) Artificial Intelligence XXXVII. SGAI 2020. Lecture Notes in Computer Science(), vol 12498. Springer, Cham. https://doi.org/10.1007/978-3-030-63799-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63799-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63798-9

  • Online ISBN: 978-3-030-63799-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics