Skip to main content

Bio-inspired Attentive Segmentation of Retinal OCT Imaging

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12069))

Included in the following conference series:

Abstract

Albeit optical coherence imaging (OCT) is widely used to assess ophthalmic pathologies, localization of intra-retinal boundaries suffers from erroneous segmentations due to image artifacts or topological abnormalities. Although deep learning-based methods have been effectively applied in OCT imaging, accurate automated layer segmentation remains a challenging task, with the flexibility and precision of most methods being highly constrained. In this paper, we propose a novel method to segment all retinal layers, tailored to the bio-topological OCT geometry. In addition to traditional learning of shift-invariant features, our method learns in selected pixels horizontally and vertically, exploiting the orientation of the extracted features. In this way, the most discriminative retinal features are generated in a robust manner, while long-range pixel dependencies across spatial locations are efficiently captured. To validate the effectiveness and generalisation of our method, we implement three sets of networks based on different backbone models. Results on three independent studies show that our methodology consistently produces more accurate segmentations than state-of-the-art networks, and shows better precision and agreement with ground truth. Thus, our method not only improves segmentation, but also enhances the statistical power of clinical trials with layer thickness change outcomes.

G. Lazaridis and M. Xu—these authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garway-Heath, D.F., Quartilho, A., Prah, P., Crabb, D.P., Cheng, Q., Zhu, H.: Evaluation of visual field and imaging outcomes for glaucoma clinical trials (an American Ophthalomological Society thesis). Trans. Am. Ophthalmol. Soc. 115, T4 (2017)

    Google Scholar 

  2. London, A., Benhar, I., Schwartz, M.: The retina as a window to the brain-from eye research to CNS disorders. Nat. Rev. Neurol. 9(1), 44–53 (2013)

    Article  Google Scholar 

  3. Chiu, S.J., Li, X.T., et al.: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Exp. 18(18), 19413–19428 (2010)

    Article  Google Scholar 

  4. Keller, B., Cunefare, D., et al.: Length-adaptive graph search for automatic segmentation of pathological features in optical coherence tomography images. J. Biomed. Opt. 21(7), 1–9 (2016)

    Article  Google Scholar 

  5. Carass, A., Lang, A., et al.: Multiple-object geometric deformable model for segmentation of macular OCT. Biomed. Opt. Exp. 5(4), 1062–1074 (2014)

    Article  Google Scholar 

  6. Garvin, M.K., Abramoff, M.D., et al.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009)

    Article  Google Scholar 

  7. Lang, A., Carass, A., et al.: Retinal layer segmentation of macular OCT images using boundary classification. Biomed. Opt. Exp. 4(7), 1133–1152 (2013)

    Article  Google Scholar 

  8. He, Y., et al.: Fully convolutional boundary regression for retina OCT segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 120–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_14

    Chapter  Google Scholar 

  9. Ben-Cohen, A., Mark, D., et al.: Retinal layers segmentation using fully convolutional network in OCT images (2017)

    Google Scholar 

  10. Liefers, B., González-Gonzalo, et al.: Dense segmentation in selected dimensions: application to retinal optical coherence tomography. In: MIDL, pp. 337–346 (2019)

    Google Scholar 

  11. Roy, A.G., Conjeti, S., et al.: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Exp. 8(8), 3627–3642 (2017)

    Article  Google Scholar 

  12. Qu, G., Zhang, W., et al.: StripNet: towards topology consistent strip structure segmentation. In: ACM MM, pp. 283–291 (2018)

    Google Scholar 

  13. Devalla, S.K., Renukanand, P.K., Sreedhar, B.K., Subramanian, G., Zhang, L., et al.: DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images. Biomed. Opt. Exp. 9(7), 3244–3265 (2018)

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Montesano, G., Bryan, S.R., et al.: A comparison between the compass fundus perimeter and the Humphrey Field Analyzer. Ophthalmology 126(2), 242–251 (2019)

    Article  Google Scholar 

  16. Chiu, S.J., Allingham, M.J., et al.: Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed. Opt. Exp. 6(4), 1172–1194 (2015)

    Article  Google Scholar 

  17. Romero, A., Drozdzal, M., Erraqabi, A., Jégou, S., Bengio, Y.: Image Segmentation by Iterative Inference from Conditional Score Estimation. CoRR abs/1705.07450 (2017)

    Google Scholar 

  18. Wang, X., Girshick, R., et al.: Non-local neural networks. In: Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  19. Kim, J., On, K.W., et al.: Hadamard product for low-rank bilinear pooling. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. ICML 5(4), 1062–1074 (2015)

    Google Scholar 

  21. Alexe, K., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NIPS, vol. 5, no. 4, pp. 1062–1074 (2012)

    Google Scholar 

  22. Badrinarayanan, V., Kendall, A., et al.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Recogn. Mach. Intell. (TPAMI) 39, 2481–2495 (2015)

    Article  Google Scholar 

  23. Oktay, O., Schlemper, J., et al.: Attention U-Net: learning where to look for the pancreas. In: Medical Imaging with Deep Learning (MIDL) (2018)

    Google Scholar 

  24. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Lazaridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lazaridis, G., Xu, M., Afgeh, S.S., Montesano, G., Garway-Heath, D. (2020). Bio-inspired Attentive Segmentation of Retinal OCT Imaging. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science(), vol 12069. Springer, Cham. https://doi.org/10.1007/978-3-030-63419-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63419-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63418-6

  • Online ISBN: 978-3-030-63419-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics