Skip to main content

Modelling of Bedload Sediment Transport for Weak and Strong Regimes

  • Chapter
  • First Online:
Numerical Simulation in Physics and Engineering: Trends and Applications

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 24))

Abstract

A two-layer shallow water type model is proposed to describe bedload sediment transport for strong and weak interactions between the fluid and the sediment. The key point falls into the definition of the friction law between the two layers, which is a generalization of those introduced in Fernández-Nieto et al. (https://doi.org/10.1051/m2an/2016018). Moreover, we prove formally that the two-layer model converges to a Saint-Venant-Exner system (SVE) including gravitational effects when the ratio between the hydrodynamic and morphodynamic time scales is small. The SVE with gravitational effects is a degenerated nonlinear parabolic system, whose numerical approximation can be very expensive from a computational point of view, see for example T. Morales de Luna et al. (https://doi.org/10.1007/s10915-010-9447-1). In this work, gravitational effects are introduced into the two-layer system without any parabolic term, so the proposed model may be a advantageous solution to solve bedload sediment transport problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashida, K., Michiue, M.: Study on hydraulic resistance and bedload transport rate in alluvial streams. JSCE Tokyo 206, 59–69 (1972)

    Google Scholar 

  2. Bagnold, R.A.: The flow of cohesionless grains in fluids. R. Soc. Lond. Philos. Trans. Ser. A. Math. Phys. Sci. 249(964), 235–297 (1956)

    MathSciNet  Google Scholar 

  3. Chanson, H.: The Hydraulics of Open Channel Flow: An Introduction. Elsevier Butterworth-Heinemann, Oxford (2004)

    Google Scholar 

  4. Charru, F.: Selection of the ripple length on a granular bed sheared by a liquid flow. Phys. Fluids 18, 121508 (2006)

    Article  Google Scholar 

  5. Einstein, H.A.: Formulas for the transportation of bed load. ASCE 107, 561–575 (1942)

    Google Scholar 

  6. Engelund, F., Dresoe, J.: A sediment transport model for straight alluvial channels. Nordic Hydrol. 7, 293–306 (1976)

    Article  Google Scholar 

  7. Exner, F.: Über die wechselwirkung zwischen wasser und geschiebe in flüssen. Sitzungsber. Akad. Wissenschaften pt. IIa. Bd. 134 (1925)

    Google Scholar 

  8. Fernández Luque, R., Van Beek, R.: Erosion and transport of bedload sediment. J. Hydraulaul. Res. 14, 127–144 (1976)

    Article  Google Scholar 

  9. Fernández-Nieto, E.D., Lucas, C., Morales de Luna, T., Cordier, S.: On the influence of the thickness of the sediment moving layer in the definition of the bedload trasport formula in Exner systems. Comp. Fluids 91, 87–106 (2014)

    Google Scholar 

  10. Fernández-Nieto, E.D., Morales de Luna, T., Narbona-Reina, G., Zabsonré, J.D.: Formal deduction of the Saint-Venant-Exner model including arbitrarily sloping sediment beds and associated energy. ESAIM: M2AN 51, 115–145 (2017)

    Google Scholar 

  11. Fowler, A.C., Kopteva, N., Oakley, C.: The formation of river channel. SIAM J. Appl. Math. 67, 1016–1040 (2007)

    Article  MathSciNet  Google Scholar 

  12. Kalinske, A.A.: Criteria for determining sand transport by surface creep and saltation. Trans. AGU. 23(2), 639–643 (1942)

    Article  Google Scholar 

  13. Kovacs, A., Parker, G.: A new vectorial bedload formulation and its application to the time evolution of straight river channels. J. Fluid Mech. 267, 153–183 (1994)

    Article  Google Scholar 

  14. Meyer-Peter, E., Müller, R.: Formulas for bedload transport. ASCE 107, 561–575 (1942). Rep. 2nd Meet. Int. Assoc. Hydraul. Struct. Res., Stockolm, pp. 39–64

    Google Scholar 

  15. Michoski, C., Dawson, C., Mirabito, C., Kubatko, E.J., Wirasaet, D., Westerink, J.J.: Fully coupled methods for multiphase morphodynamics. Adv. Water Resour. 59, 95–110 (2013)

    Article  Google Scholar 

  16. Morales de Luna, T., Castro Díaz, M.J., Parés Madroñal, C.: A Duality Method for Sediment Transport Based on a Modified Meyer-Peter & Müller Model. J. Sci. Comp. 48, 258–273 (2011)

    Google Scholar 

  17. Nielsen, P.: Coastal Bottom Boundary Layers and Sediment Transport. Advanced Series on Ocean Engineering, vol. 4. World Scientific Publishing, Singapore (1992)

    Google Scholar 

  18. Savary, C.: Transcritical transient flow over mobile bed. Two-layer shallow-water model. PhD thesis, Université catholique de Louvain (2007)

    Google Scholar 

  19. Seminara, G., Solari, L., Parker, G.: Bed load at low Shields stress on arbitrarily sloping beds: failure of the Bagnold hypothesis. Water Resour. Res. 38, 11 (2002). https://doi.org/10.1029/2001WR000681

    Article  Google Scholar 

  20. Spinewine, B.: Two-layer flow behaviour and the effects of granular dilatancy in dam-break induced sheet-flow. PhD Thesis n.76, Université catholique de Louvain (2005)

    Google Scholar 

  21. Swartenbroekx, C., Soares-Frazão, S., Spinewine, B., Guinot, V., Zech, Y.: Hyperbolicity preserving HLL solver for two-layer shallow-water equations applied to dam-break flows. In: Dittrich, A., Koll, Ka., Aberle, J., Geisenhainer, P. (eds.). River Flow 2010, vol. 2, pp. 1379–1387. Bundesanstalt fur Wasserbau (BAW), Karlsruhe (2010)

    Google Scholar 

  22. Tassi, P., Rhebergen, S., Vionnet, C., Bokhove, O.: A discontinuous Galerkin finite element model for morphodynamical evolution in shallow flows. Comp. Meth. App. Mech. Eng. 197, 2930–2947 (2008)

    Article  Google Scholar 

  23. Van Rijn, L.C.: Sediment transport (I): bed load transport. J. Hydraul. Div. Proc. ASCE 110, 1431–1456 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the Spanish Government and FEDER through the coordinated Research projects MTM 2015-70490-C2-1-R and MTM 2015-70490-C2-2-R. The authors would like to thank M.J. Castro Díaz and R. Maurin for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Narbona-Reina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Escalante, C., Fernández-Nieto, E.D., Luna, T.M.d., Narbona-Reina, G. (2021). Modelling of Bedload Sediment Transport for Weak and Strong Regimes. In: Greiner, D., Asensio, M.I., Montenegro, R. (eds) Numerical Simulation in Physics and Engineering: Trends and Applications. SEMA SIMAI Springer Series, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-62543-6_6

Download citation

Publish with us

Policies and ethics