Skip to main content

Consistent Internal Energy Based Schemes for the Compressible Euler Equations

  • Chapter
  • First Online:
Numerical Simulation in Physics and Engineering: Trends and Applications

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 24))

Abstract

Numerical schemes for the solution of the Euler equations have recently been developed, which involve the discretisation of the internal energy equation, with corrective terms to ensure the correct capture of shocks, and, more generally, the consistency in the Lax-Wendroff sense. These schemes may be staggered or colocated, using either structured meshes or general simplicial or tetrahedral/hexahedral meshes. The time discretization is performed by fractional-step algorithms; these may be either based on semi-implicit pressure correction techniques or segregated in such a way that only explicit steps are involved (referred to hereafter as “explicit” variants). In order to ensure the positivity of the density, the internal energy and the pressure, the discrete convection operators for the mass and internal energy balance equations are carefully designed; they use an upwind technique with respect to the material velocity only. The construction of the fluxes thus does not need any Riemann or approximate Riemann solver, and yields easily implementable algorithms. The stability is obtained without restriction on the time step for the pressure correction scheme and under a CFL-like condition for explicit variants: preservation of the integral of the total energy over the computational domain, and positivity of the density and the internal energy. The semi-implicit first-order upwind scheme satisfies a local discrete entropy inequality. If a MUSCL-like scheme is used in order to limit the scheme diffusion, then a weaker property holds: the entropy inequality is satisfied up to a remainder term which is shown to tend to zero with the space and time steps, if the discrete solution is controlled in L and BV norms. The explicit upwind variant also satisfies such a weaker property, at the price of an estimate for the velocity which could be derived from the introduction of a new stabilization term in the momentum balance. Still for the explicit scheme, with the above-mentioned MUSCL-like scheme, the same result only holds if the ratio of the time to the space step tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berselli, L., Illiescu, T., Layton, W.: Mathematics of Large Eddy Simulation of Turbulent Flows. Springer, New York (2006)

    Google Scholar 

  2. Berthon, C., Desveaux, V.: An entropy preserving MOOD scheme for the Euler equations. Int. J. Finite Vol. 11, 1–39 (2014)

    MathSciNet  Google Scholar 

  3. Bouchut, F.: Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. In: Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004)

    Google Scholar 

  4. CALIF3S: A software components library for the computation of reactive turbulent flows. https://gforge.irsn.fr/gf/project/isis

  5. Chiodaroli, E., Feireisl, E., Kreml, O.: On the weak solutions to the equations of a compressible heat conducting gas. Annales de l’Institut Henri Poincaré. Analyse Non Linéaire 32, 225–243 (2015)

    Article  MathSciNet  Google Scholar 

  6. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P., Lions, J. (eds.) Handbook of Numerical Analysis, vol. II, pp. 17–351. North Holland, Amsterdam (1991)

    Google Scholar 

  7. Coquel, F., Helluy, P., Schneider, J.: Second-order entropy diminishing scheme for the Euler equations. Int. J. Numer. Meth. Fluids 50, 1029–1061 (2006)

    Article  MathSciNet  Google Scholar 

  8. Crouzeix, M., Raviart, P.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Série Rouge 7, 33–75 (1973)

    MathSciNet  MATH  Google Scholar 

  9. Dakin, G., Després, B., Jaouen, S.: High-order staggered schemes for compressible hydrodynamics. Weak consistency and numerical validation. J. Comput. Phys. 376, 339–364 (2019)

    MATH  Google Scholar 

  10. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P., Lions, J. (eds.) Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North Holland, Amsterdam (2000)

    Google Scholar 

  11. Feireisl, E., Hošek, R., Michálek, M.: A convergent numerical method for the full Navier-Stokes-Fourier system in smooth physical domains. SIAM J. Numer. Anal. 54, 3062–3082 (2016)

    Article  MathSciNet  Google Scholar 

  12. Gallouët, T., Gastaldo, L., Herbin, R., Latché, J.C.: An unconditionally stable pressure correction scheme for compressible barotropic Navier-Stokes equations. Math. Modell. Numer. Anal. 42, 303–331 (2008)

    Article  MathSciNet  Google Scholar 

  13. Gallouët, T., Herbin, R., Latché, J.C.: Kinetic energy control in explicit finite volume discretizations of the incompressible and compressible Navier-Stokes equations. Int. J. Finite Vol. 7(2), 1–6 (2010)

    MathSciNet  Google Scholar 

  14. Gastaldo, L., Herbin, R., Latché, J.C., Therme, N.: A MUSCL-type segregated - explicit staggered scheme for the Euler equations. Comput. Fluids 175, 91–110 (2018)

    Article  MathSciNet  Google Scholar 

  15. Godunov, S.K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.) 47(89), 271–306 (1959)

    Google Scholar 

  16. Goudon, T., Llobell, J., Minjeaud, S.: A staggered scheme for the Euler equations. In: Finite Volumes for Complex Applications VIII - Problems and Perspectives - Lille (2017)

    Google Scholar 

  17. Grapsas, D., Herbin, R., Kheriji, W., Latché, J.C.: An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations. SMAI-J. Comput. Math. 2, 51–97 (2016)

    Article  MathSciNet  Google Scholar 

  18. Guillard, H.: Recent developments in the computation of compressible low Mach flows. Flow Turbul. Combust. 76, 363–369 (2006)

    Article  Google Scholar 

  19. Harlow, F., Amsden, A.: A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8, 197–213 (1971)

    Article  Google Scholar 

  20. Harlow, F., Welsh, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MathSciNet  Google Scholar 

  21. Herbin, R., Kheriji, W., Latché, J.C.: On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations. Math. Modell. Numer. Anal. 48, 1807–1857 (2014)

    Article  MathSciNet  Google Scholar 

  22. Herbin, R., Latché, J.C., Nguyen, T.: Consistent segregated staggered schemes with explicit steps for the isentropic and full Euler equations. Math. Modell. Numer. Anal. 52, 893–944 (2018)

    Article  MathSciNet  Google Scholar 

  23. Herbin, R., Latché, J.C., Minjeaud, S., Therme, N.: Conservativity and weak consistency of a class of staggered finite volume methods for the Euler equations. Math. Comput. (2020) https://doi.org/10.1090/mcom/3575

  24. Herbin, R., Latché, J.C., Saleh, K.: Low mach number limit of some staggered schemes for compressible barotropic flows (2019, submitted). https://arxiv.org/abs/1803.09568

  25. Herbin, R., Latché, J.C., Zaza, C.: A cell-centered pressure-correction scheme for the compressible Euler equations. IMAJNA. J. Numer. Anal. 40(3), 1792–1837 (2020)

    Article  Google Scholar 

  26. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions. II. Entropy production at shocks. J. Comput. Phys. 228, 5410–5436 (2009)

    MATH  Google Scholar 

  27. Larrouturou, B.: How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys. 95, 59–84 (1991)

    Article  MathSciNet  Google Scholar 

  28. Latché, J.C., Saleh, K.: A convergent staggered scheme for variable density incompressible Navier-Stokes equations. Math. Comput. 87, 581–632 (2018)

    Article  MathSciNet  Google Scholar 

  29. Liou, M.S.: A sequel to AUSM, part II: AUSM+-up. J. Comput. Phys. 214, 137–170 (2006)

    Article  MathSciNet  Google Scholar 

  30. Liou, M.S., Steffen, C.: A new flux splitting scheme. J. Computat. Phys. 107, 23–39 (1993)

    Article  MathSciNet  Google Scholar 

  31. Llobell, J.: Schémas volumes finis à mailles décalées pour la dynamique des gaz. Ph.D. thesis, Université Côte d’Azur (2018)

    Google Scholar 

  32. Mardane, A., Fjordholm, U., Mishra, S., Tadmor, E.: Entropy conservative and entropy stable finite volume schemes for multi-dimensional conservation laws on unstructured meshes. In: European Congress Computational Methods Applied Sciences and Engineering, Proceedings of ECCOMAS 2012, held in Vienna (2012)

    Google Scholar 

  33. Piar, L., Babik, F., Herbin, R., Latché, J.C.: A formally second order cell centered scheme for convection-diffusion equations on general grids. Int. J. Numer. Meth. Fluids 71, 873–890 (2013)

    Article  Google Scholar 

  34. Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Meth. Part. Diff. Equ. 8, 97–111 (1992)

    Article  MathSciNet  Google Scholar 

  35. Ray, D., Chandrashekar, P., Fjordholm, U.S., Mishra, S.: Entropy stable scheme on two-dimensional unstructured grids for Euler equations. Commun. Comput. Phys. 19(5), 1111–1140 (2016)

    Article  MathSciNet  Google Scholar 

  36. Sagaut, P.: Large Eddy Simulation for Incompressible Flows: An Introduction. Springer, New York (2006)

    MATH  Google Scholar 

  37. Steger, J., Warming, R.: Flux vector splitting of the inviscid gaz dynamics equations with applications to finite difference methods. J. Comput. Phys. 40, 263–293 (1981)

    Article  MathSciNet  Google Scholar 

  38. Tadmor, E.: Entropy stable schemes. In: Abgrall, R., Shu, C.W. (eds.) Handbook of Numerical Analysis, vol. XVII, pp. 767–493. North Holland, Amsterdam (2016)

    Google Scholar 

  39. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics – A Practical Introduction, 3rd edn. Springer, New York (2009)

    Book  Google Scholar 

  40. Toro, E., Vázquez-Cendón, M.: Flux splitting schemes for the Euler equations. Comput. Fluids 70, 1–12 (2012)

    Article  MathSciNet  Google Scholar 

  41. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    MATH  Google Scholar 

  42. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer Series in Computational Mathematics, vol. 29. Springer, New York (2001)

    Google Scholar 

  43. Zha, G.C., Bilgen, E.: Numerical solution of Euler equations by a new flux vector splitting scheme. Int. J. Numer. Meth. Fluids 17, 115–144 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Herbin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallouët, T., Herbin, R., Latché, J.C., Therme, N. (2021). Consistent Internal Energy Based Schemes for the Compressible Euler Equations. In: Greiner, D., Asensio, M.I., Montenegro, R. (eds) Numerical Simulation in Physics and Engineering: Trends and Applications. SEMA SIMAI Springer Series, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-62543-6_3

Download citation

Publish with us

Policies and ethics