Skip to main content

Computational Treatment of Interface Dynamics via Phase-Field Modeling

  • Chapter
  • First Online:
Numerical Simulation in Physics and Engineering: Trends and Applications

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 24))

Abstract

This chapter describes the phase-field approach to modeling interface dynamics, with particular emphasis on the mathematical formulation and computational aspects. We describe to approaches to derive a phase-field model. The first one can be understood as a regularization approach: We start with a sharp interface model which is later replaced by a diffuse interface. The second approach starts with a free energy functional and balance laws for mass, linear momentum and energy; the final governing equations are derived using the second law of thermodynamics and the Coleman-Noll procedure. We finish by illustrating how the phase-field method can be used to solve problems on complicated geometries using cartesian grids only. Some of the opportunities opened by the phase-field approach are illustrated with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term phase may refer to different concepts. It can be used, e.g., to define the different states of matter in a solid-liquid model, the different components in a mixture, or to determine whether there is a fracture or not in a crack propagation model.

  2. 2.

    In the case σ = 0, Eqs. (1)–(4) is referred to as the classical Stefan problem.

  3. 3.

    Although Fourier’s law is the most common theory used in heat transmission problems, there are other possibilities [28, 29, 31, 32].

  4. 4.

    Note that V n is the normal velocity of the interface, that is, V n = v LS ⋅n LS.

  5. 5.

    The co-area formula is

    $$\displaystyle \begin{aligned} \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_\Omega q\Big( \frac{d_{\Gamma_{\mathrm{int}}}(\boldsymbol{x})}{\epsilon} \Big) \,\mathrm{d} x = \alpha_q \; \int_{\Gamma_{\mathrm{int}}} \mathrm{d} a , \end{aligned} $$
    (41)

    In this case, we use a constant value for α q, where \(\alpha _q = \int _{-\infty }^\infty q(z) \,\mathrm {d} z\). The co-area formula is valid for suitably decaying functions q(z), see [21, Lemma 2.1].

  6. 6.

    A more mathematically rigorous relation between \(\mathcal {F}^{\,\epsilon }\) and \(\mathcal {F}\) can be determined by means of the Γ-convergence theory [2, 9, 18].

  7. 7.

    The term constitutive class means that a certain function is allowed to depend on other variables. In this case, the constitutive class of Ψ allows it to depend on ϕ and ∇ϕ. Fundamental laws can be used to restrict even more the constitutive class of a function and allow only certain kinds of dependence. The term constitutive class is commonly employed in classical mechanics; see [37, 63].

  8. 8.

    Mass conservation in Eq. (54), i.e., \(\frac {\mathrm {d}}{\mathrm {d} t}(\int _{\Omega }\phi \,\mathrm {d} x)=0\), is satisfied for natural boundary conditions h ⋅n a = 0 on  Ω, where n a is the unit normal vector to  Ω.

  9. 9.

    The term μ h in Eq. (57) may be interpreted as an energy flux.

  10. 10.

    Note that, on multiphase systems, balance of angular momentum does not imply the symmetry of T [7].

  11. 11.

    If A is a symmetric tensor, then A : B = A : (B + B T)∕2. Consequently, it can easily be proven that if A is symmetric and B is skew-symmetric, then A : B = 0.

  12. 12.

    Usually, m and ν are assumed to be constant.

  13. 13.

    The smooth function δ Γ works as a marker of the position of the boundary of the moving domain. A suitable expression for this function could be, e.g., δ Γ = 𝜖 2|∇ϕ|2, though there are other valid expressions for δ Γ in the literature.

  14. 14.

    Note that the velocity of ρ Γ within the surface Γρ (i.e., u Γ) does not necessarily coincide with the velocity of the surface \((\boldsymbol {u}_{\Gamma _\rho })\).

  15. 15.

    The variational formulation corresponding to the reference problem is analogous.

References

  1. Altundas, Y.B., Caginalp, G.: Computations of dendrites in 3-d and comparison with microgravity experiments. J. Stat. Phys. 110(3–6), 1055–1067 (2003)

    Article  MATH  Google Scholar 

  2. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30(1), 139–165 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biben, T., Kassner, K., Misbah, C.: Phase-field approach to three-dimensional vesicle dynamics. Phys. Rev. E 72(4), 041921 (2005)

    Article  Google Scholar 

  5. Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A.: Phase-field simulation of solidification 1. Annu. Rev. Mater. Res. 32(1), 163–194 (2002)

    Article  Google Scholar 

  6. Borden, M.J., Hughes, T.J.R., Landis, C.M., Verhoosel, C.V.: A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Comput. Methods Appl. Mech. Eng. 273, 100–118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, volume III: Mixtures and EM Field Theories, pp. 1–127. Academic Press, New York (1976)

    Google Scholar 

  8. Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B., Quintard, M.: Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows. Transp. Porous Media 82(3), 463–483 (2010)

    Article  MathSciNet  Google Scholar 

  9. Braides, A.: Γ -convergence for Beginners. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  10. Bueno, J., Bona-Casas, C., Bazilevs, Y., Gomez, H.: Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion. Comput. Mech., 1–14 (2014)

    Google Scholar 

  11. Caginalp, G.: Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. Phys. Rev. A 39(11), 5887 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ceniceros, H.D., Nós, R.L., Roma, A.M.: Three-dimensional, fully adaptive simulations of phase-field fluid models. J. Comput. Phys. 229(17), 6135–6155 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, L.-Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32(1), 113–140 (2002)

    Article  Google Scholar 

  14. Chen, X., Caginalp, G., Eck, C.: A rapidly converging phase field model. Discrete Contin. Dynam. Syst. 15(4), 1017 (2006)

    Article  MATH  Google Scholar 

  15. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  16. Colli, P., Frigeri, S., Grasselli, M.: Global existence of weak solutions to a nonlocal Cahn-Hilliard-Navier-Stokes system. J. Math. Anal. Appl. 386(1), 428–444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  18. Dal Maso, G.: An Introduction to Γ-convergence. Springer, New York (1993)

    Book  MATH  Google Scholar 

  19. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dedeè, L., Borden, M.J., Hughes, T.J.: Isogeometric analysis for topology optimization with a phase field model. Arch. Comput. Methods Eng. 19(3), 427–465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Du, Q., Liu, C., Ryham, R., Wang, X.: A phase field formulation of the Willmore problem. Nonlinearity 18, 1249–1267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Emmerich, H.: The Diffuse Interface Approach in Materials Science: Thermodynamic Concepts and Applications of Phase-Field Models. Lecture Notes in Physics. Springer, Berlin (2003)

    Google Scholar 

  23. Fedkiw, R., Osher, S.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)

    MATH  Google Scholar 

  24. Fife, P.C.: Dynamics of Internal Layers and Diffusive Interfaces, volume 53 of CBMS-NSF Reginonal Conference Series in Applied Mathematics. Society of Industrial and Applied Mathematics (SIAM), Philadelphia (1988)

    Book  Google Scholar 

  25. Gal, C.G., Grasselli, M.: Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2d. In: Annales de l’Institut Henri Poincare (C) Non Linear Analysis, vol. 27-1, pp. 401–436. Elsevier, New York (2010)

    Google Scholar 

  26. Gal, C.G., Grasselli, M.: Instability of two-phase flows: a lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system. Physica D Nonlinear Phenomena 240(7), 629–635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gomez, H., Hughes, T.J.R.: Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys. 230(13), 5310–5327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gómez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A discontinuous Galerkin method for a hyperbolic model for convection–diffusion problems in CFD. Int. J. Numer. Methods Eng. 71(11), 1342–1364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gómez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A finite element formulation for a convection–diffusion equation based on Cattaneo’s law. Comput. Methods Appl. Mech. Eng. 196(9), 1757–1766 (2007)

    Article  MATH  Google Scholar 

  30. Gomez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197, 4333–4352 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gómez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A mathematical model and a numerical model for hyperbolic mass transport in compressible flows. Heat Mass Transfer 45(2), 219–226 (2008)

    Article  MATH  Google Scholar 

  32. Gómez, H., Colominas, I., Navarrina, F., París, J., Casteleiro, M.: A hyperbolic theory for advection-diffusion problems: mathematical foundations and numerical modeling. Arch. Comput. Methods Eng. 17(2), 191–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gomez, H., Reali, A., Sangalli, G.: Accurate, efficient, and (iso) geometrically flexible collocation methods for phase-field models. J. Comput. Phys. 262, 153–171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gonzalez-Ferreiro, B., Gomez, H., Romero, I.: A thermodynamically consistent numerical method for a phase field model of solidification. Commun. Nonlinear Sci. Numer. Simul. 19(7), 2309–2323 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gurtin, M.E.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys. D 92, 178–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(6), 815–832 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  38. Haberleitner, M., Jüttler, B., Scott, M.A., Thomas, D.C.: Isogeometric analysis: representation of geometry. In: Encyclopedia of Computational Mechanics Second Edition, pp. 1–24 (2017)

    Google Scholar 

  39. Hawkins-Daarud, A., van der Zee, K.G., Oden, J.T.: Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Methods Biomed. Eng. 28, 3–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hou, T.Y., Lowengrub, J.S., Shelley, M.J.: Boundary integral methods for multicomponent fluids and multiphase materials. J. Comput. Phys. 169(2), 302–362 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hughes, T.J.R., Sangalli, G.: Mathematics of isogeometric analysis: a conspectus. In: Encyclopedia of Computational Mechanics Second Edition, pp. 1–40 (2018)

    Google Scholar 

  42. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jacqmin, D.: Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys. 155(1), 96–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Jansen, K.E., Whiting, C.H., Hulbert, G.M.: A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190, 305–319 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn-Hilliard-Navier-Stokes system. Interfaces Free Bound 10(1), 15–43 (2008)

    Article  MathSciNet  Google Scholar 

  46. Kim, J., Lowengrub, J.: Phase field modeling and simulation of three-phase flows. Interfaces Free Bound. 7, 435–466 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kobayashi, R.: A numerical approach to three-dimensional dendritic solidification. Exp. Math. 3(1), 59–81 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  49. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D Nonlinear Phenomena 179(3), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu, J., Gomez, H., Evans, J.A., Hughes, T.J.R., Landis, C.M.: Functional entropy variables: a new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier-Stokes-Korteweg equations. J. Comput. Phys. 248, 47–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Liu, J., Landis, C.M., Gomez, H., Hughes, T.J.R.: Liquid-vapor phase transition: thermomechanical theory, entropy stable numerical formulation, and boiling simulations. Comput. Methods Appl. Mech. Eng. 297, 476–553 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lorenzo, G., Scott, M.A., Tew, K.B., Hughes, T.J.R., Zhang, Y.J., Liu, L., Vilanova, G., Gomez, H.: Tissue-scale, personalized modeling and simulation of prostate cancer growth. Proc. Natl. Acad. Sci. 113(48), E7663–E7671 (2016)

    Article  Google Scholar 

  53. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lowengrub, J.S., Rätz, A., Voigt, A.: Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79, 031926 (2009)

    Article  MathSciNet  Google Scholar 

  55. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Moure, A., Gomez, H.: Phase-field model of cellular migration: three-dimensional simulations in fibrous networks. Comput. Methods Appl. Mech. Eng. 320, 162–197 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Oden, J.T., Hawkins, A., Prudhomme, S.: General diffuse-interface theories and an approach to predictive tumor growth modeling. Math. Models Methods Appl. Sci. 20(03), 477–517 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Penrose, O., Fife, P.C.: Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Phys. D 43(1), 44–62 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  59. Provatas, N., Elder, K.: Phase-Field Methods in Materials Science and Engineering. Wiley-VCH, Weinheim (2010)

    Book  Google Scholar 

  60. Queutey, P., Visonneau, M.: An interface capturing method for free-surface hydrodynamic flows. Comput. Fluids 36(9), 1481–1510 (2007)

    Article  MATH  Google Scholar 

  61. Romano, A., Marasco, A.: Continuum Mechanics: Advanced Topics and Research Trends. Modeling and Simulation in Science, Engineering and Technology. Springer, New York (2010)

    Google Scholar 

  62. Shao, D., Levine, H., Rappel, W.-J.: Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc. Natl. Acad. Sci. 109(18), 6851–6856 (2012)

    Article  Google Scholar 

  63. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Springer, New York (1965)

    MATH  Google Scholar 

  64. Vilanova, G., Gomez, H., Colominas, I.: A numerical study based on the FEM of a multiscale continuum model for tumor angiogenesis. J. Biomech. 45, S466 (2012)

    Article  Google Scholar 

  65. Vilanova, G., Colominas, I., Gomez, H.: Capillary networks in tumor angiogenesis: from discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis. Int. J. Numer. Methods Biomed. Eng. 29(10), 1015–1037 (2013)

    Article  MathSciNet  Google Scholar 

  66. Vilanova, G., Colominas, I., Gomez, H.: Coupling of discrete random walks and continuous modeling for three-dimensional tumor-induced angiogenesis. Comput. Mech. 53(3), 449–464 (2014)

    Article  Google Scholar 

  67. Wang, S.-L., Sekerka, R.F., Wheeler, A.A., Murray, B.T., Coriel, S.R., Braun, R.J., McFadden, G.B.: Thermodynamically-consistent phase-field models for solidification. Phys. D 69, 189–200 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  68. Xu, J., Vilanova, G., Gomez, H.: Phase-field model of vascular tumor growth: Three-dimensional geometry of the vascular network and integration with imaging data. Comput. Methods Appl. Mech. Eng. 359, 112648 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Gomez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bures, M., Moure, A., Gomez, H. (2021). Computational Treatment of Interface Dynamics via Phase-Field Modeling. In: Greiner, D., Asensio, M.I., Montenegro, R. (eds) Numerical Simulation in Physics and Engineering: Trends and Applications. SEMA SIMAI Springer Series, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-62543-6_2

Download citation

Publish with us

Policies and ethics