Skip to main content

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 24))

Abstract

The aeroelasticity is the science which models, analyses and describes the coupled movements between a flow and a flexible structure. The different phenomena encountered can be classified using three (at least) adimensional numbers: the Strouhal number, the Reynolds number and the reduce frequency number (which despite its name, has no dimension). For sake of clarity, let us just mention in this abstract, that the reduce frequency is the ratio between the time necessary to a flow particle for flying over a flexible structure and the fundamental period of oscillation of this structure.

In the framework of quasi-static aeroelasticity, it is always assumed that the reduce frequency is smaller than the unity. It enables one to define the flow fields (velocity, pressure) from a static position of the structure. The effect of its position with respect to the flow leads to a modification of the stiffness (added aerodynamic stiffness). Furthermore, the relative flow velocity (difference between the flow velocity and the one of the structure) leads to introduce damping due to the flow and therefore modifies the static analysis of stability into the dynamic stability study (aerodynamic damping).

Recently, engineers have upgraded this approach by introducing the added mass concept. This is a mechanical effect due to the fact that the inertia of the structure should take into account the mass of flow which is involved in a movement. This is performed using an incompressible and inviscid model which gives a retroaction effect on the structure proportionally to its velocity. The two first parts of this text are devoted to a formulation of this three effects which are necessary in the dynamic modeling of a flexible (or not) structure immersed in a flow (air or water for instance). Examples in civil engineering and aerodynamics are given in order to illustrate the theoretical formulation. Few control aspects in a dynamic behavior of the coupled fluid-structure modeling are also discussed in a section of this text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, V.: Dynamical System, nine volumes (under the supervision of V. Arnold). Encyclopaedia of Mathematical Sciences Series. Springer, New York (1990)

    Google Scholar 

  2. Balakrishnan, A.V.: Aeroelasticity: The Continuum Theory. Springer, New York (2012)

    Book  Google Scholar 

  3. Bellman, R.: Control Theory. Sci. Am. 211(3), 186–200 (1964)

    Article  Google Scholar 

  4. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton, NJ (1957)

    MATH  Google Scholar 

  5. Bellman, R.E.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton, NJ (1961)

    Book  Google Scholar 

  6. Bensoussan, A.: Points de Nash dans le cas de fonctionnelles quadratiques et jeux di fférentiels linéaires à N personnes. SIAM J. Control 12, 3 (1974)

    Article  Google Scholar 

  7. Bensoussan, A., Lions, J.L.: Application of Variational Inequalities in Stochastic Control. North Holland, Amsterdam (1982)

    MATH  Google Scholar 

  8. Billah, Y.K., Scanlan, R.H.: Resonance, Tacoma bridge failure, and undergraduate physics textbooks. Am. J. Phys. 59(2), 118–124 (1991)

    Article  Google Scholar 

  9. Bisplinghoff, R.L., Ashley, H., Halfman, H.: Aeroelasticity. Dover Science, New York (1996)

    MATH  Google Scholar 

  10. Cartan, E.: Calcul différentiel. Herman, Paris (1957)

    MATH  Google Scholar 

  11. Cea, J.: Optimisation: Théorie et algorithmes. Dunod, Paris (1968)

    MATH  Google Scholar 

  12. Collar, A.R.: The first fifty years of aeroelasticity. Aerospace 5(2), 12–20 (1978)

    Google Scholar 

  13. Curtiss, H.C.Jr., Scanlan, R.H., Sisto, F., Dowell, E.H.: A Modern Course in Aeroelasticity. (Mechanics: Dynamical Systems), 2nd rev. and enlarged Edition. Dover, New York (2008)

    Google Scholar 

  14. Den Hartog, J.P.: Mechanical Vibrations, 3rd edn. McGraw-Hill, New York (1947)

    MATH  Google Scholar 

  15. Destuynder, Ph.: Analyse et contrôle des équations différentielles ordinaires. Hermès-Lavoisier, Londres-Paris (2006)

    Google Scholar 

  16. Destuynder, Ph.: Aéroélasticité et aéroacoustique. Paperback Hermès-Lavoisier, Londres-Paris (2007)

    Google Scholar 

  17. Destuynder, Ph., Ribereau, M.T.: Non linear dynamics of test models in wind tunnels. Eur. J. Mech. A/Solids 15(1), 91–136 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Fung, Y.C.: An introduction to the theory of aeroelasticity. In: Dover Books on Aeronautical Engineering. Dover, New York (1969)

    Google Scholar 

  19. Garrick, I.E., Reed, W.H.: Historical development of aircraft flutter. J. Aircraft 18, 897–912 (1981)

    Article  Google Scholar 

  20. Glowinski, R., Lions, J.L., Trémolières, R.: Analyse numérique des inéquations variationnelles. Tomes I et II, Dunod, Paris (1976)

    Google Scholar 

  21. Hoque, M.E.: Active Flutter Control. LAP Lambert Academic Publishing, Saarbrücken (2010)

    Google Scholar 

  22. Kalman, R.E.: Mathematical description of linear dynamical systems. J. Soc. Ind. Appl. Math. 1, 152–192 (1963)

    Article  MathSciNet  Google Scholar 

  23. Lions, J.L.: Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968)

    MATH  Google Scholar 

  24. Lions, J.L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Masson, Paris (1988)

    MATH  Google Scholar 

  25. Pallu de la Barrière, R.: Cours d’automatique théorique. Dunod, Paris (1966)

    Google Scholar 

  26. Pontryagin, L.S.: Equations différentielles ordinaires. Editions Mir, Moscou (1969)

    Google Scholar 

  27. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Interscience and ed. Mir, Moscou (1962)

    Google Scholar 

  28. Roseau, M.: Vibrations des systèmes mécaniques: méthodes analytiques et applications. Masson, Paris (1984)

    Google Scholar 

  29. Scanlan, R.H.: Wind Effects on Structures: An Introduction to Wind Engineering, 2nd edn. Wiley-Interscience, New York (1986)

    Google Scholar 

  30. Tikhonov, A., Arsenin, V.: Solution of Ill-Posed Problems. Winston and Sons, Washington (1977). ISBN 0-470-99124-0

    MATH  Google Scholar 

  31. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, Berlin (1990)

    Book  Google Scholar 

  32. Wright, J.R., Cooper, J.E.: Introduction to Aircraft Aeroelasticity and Loads. Wiley, New York (2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Destuynder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Destuynder, P., Fabre, C. (2021). An Introduction to Quasi-Static Aeroelasticity. In: Greiner, D., Asensio, M.I., Montenegro, R. (eds) Numerical Simulation in Physics and Engineering: Trends and Applications. SEMA SIMAI Springer Series, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-62543-6_1

Download citation

Publish with us

Policies and ethics