Skip to main content

Asynchronous Filling by Myopic Luminous Robots

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2020)

Abstract

We consider the problem of filling an unknown area represented by an arbitrary connected graph of n vertices by mobile luminous robots. In this problem, the robots enter the graph one-by-one through a specific vertex, called the Door, and they eventually have to cover all vertices of the graph while avoiding collisions. The robots are anonymous and make decisions driven by the same local rule of behavior. They have limited persistent memory and limited visibility range. We investigate the Filling problem in the asynchronous model.

We assume that the robots know an upper bound \(\varDelta \) on the maximum degree of the graph before entering. We present an algorithm solving the asynchronous Filling problem with robots having 1 hop visibility range, \(O(\log \varDelta )\) bits of persistent storage, and \(\varDelta +4\) colors, including the color when the light is off. We analyze the algorithm in terms of asynchronous rounds, where a round means the smallest time interval in which each robot, which has not yet finished the algorithm, has been activated at least once. We show that this algorithm needs \(O(n^2)\) asynchronous rounds. Our analysis provides the first asymptotic upper bound on the running time in terms of asynchronous rounds.

Then we show how the number of colors can be reduced to O(1) at the cost of the running time. The algorithm with 1 hop visibility range, \(O(\log \varDelta )\) bits of persistent memory, and O(1) colors needs \(O(n^2\log \varDelta )\) rounds. We show how the running time can be improved by robots with a visibility range of 2 hops, \(O(\log \varDelta )\) bits of persistent memory, and \(\varDelta + 4\) colors (including the color when the light is off). We show that the algorithm needs O(n) asynchronous rounds. Finally, we show how to extend our solution to the k-Door case, \(k\ge 2\), by using \(\varDelta + k + 4\) colors, including the color when the light is off.

The research has been partially supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In  [6] it is assumed that the robot sees all eight sourrounding cells and able to communicate with robots at that eight cells. Assuming orthogonal movements, a cell sharing only one corner with the current cell of the robot are reachable in two hops.

References

  1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MathSciNet  Google Scholar 

  2. Aljohani, A., Poudel, P., Sharma, G.: Complete visitability for autonomous robots on graphs. IPDPS 2018, pp. 733–742 (2018)

    Google Scholar 

  3. Amir, M., Bruckstein, A.M.: Minimizing travel in the uniform dispersal problem for robotic sensors. In: AAMAS 2019, pp. 113–121 (2019)

    Google Scholar 

  4. Augustine, J., Moses Jr., W.K.: Dispersion of mobile robots: a study of memory-time trade-offs. In: ICDCN 2018, pp. 1:1–1:10 (2018)

    Google Scholar 

  5. Barrameda, E.M., Das, S., Santoro, N.: Deployment of asynchronous robotic sensors in unknown orthogonal environments. In: Fekete, S.P. (ed.) ALGOSENSORS 2008. LNCS, vol. 5389, pp. 125–140. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92862-1_11

    Chapter  Google Scholar 

  6. Barrameda, E.M., Das, S., Santoro, N.: Uniform dispersal of asynchronous finite-state mobile robots in presence of holes. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 228–243. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45346-5_17

    Chapter  Google Scholar 

  7. Bhagat, S., Mukhopadhyaya, K.: Optimum algorithm for mutual visibility among asynchronous robots with lights. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 341–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_24

    Chapter  Google Scholar 

  8. Bose, K., Kundu, M.K., Adhikary, R., Sau, B.: Arbitrary pattern formation by asynchronous opaque robots with lights. In: Censor-Hillel, K., Flammini, M. (eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 109–123. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24922-9_8

    Chapter  Google Scholar 

  9. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

    Article  MathSciNet  Google Scholar 

  10. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of lights: synchronizing asynchronous robots using visible bits. In: ICDCS 2012, pp. 506–515 (2012)

    Google Scholar 

  11. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous mobile robots with lights. Theor. Comput. Sci. 609, 171–184 (2016)

    Article  MathSciNet  Google Scholar 

  12. Daymude, J.J., Hinnenthal, K., Richa, A.W., Scheideler, C.: Computing by programmable particles. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 615–681. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_22

    Chapter  Google Scholar 

  13. D’Emidio, M., Frigioni, D., Navarra, A.: Synchronous robots vs asynchronous lights-enhanced robots on graphs. Electron. Notes Theor. Comput. Sci. 322, 169–180 (2016)

    Article  MathSciNet  Google Scholar 

  14. Feletti, C., Mereghetti, C., Palano, B.: Uniform circle formation for swarms of opaque robots with lights. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 317–332. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_21

    Chapter  Google Scholar 

  15. Flocchini, P., Santoro, N., Wada, K.: On memory, communication, and synchronous schedulers when moving and computing. In: OPODIS 2019, pp. 25:1–25:17 (2019)

    Google Scholar 

  16. Hideg, A., Lukovszki, T.: Uniform dispersal of robots with minimum visibility range. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 155–167. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72751-6_12

    Chapter  Google Scholar 

  17. Hideg, A., Lukovszki, T.: Asynchronous filling by myopic luminous robots. CoRR abs/1909.06895 (2019). http://arxiv.org/abs/1909.06895

  18. Hideg, A., Lukovszki, T., Forstner, B.: Filling arbitrary connected areas by silent robots with minimum visibility range. In: Gilbert, S., Hughes, D., Krishnamachari, B. (eds.) ALGOSENSORS 2018. LNCS, vol. 11410, pp. 193–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14094-6_13

    Chapter  Google Scholar 

  19. Hsiang, T.-R., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms for rapidly dispersing robot swarms in unknown environments. In: Boissonnat, J.-D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics V. STAR, vol. 7, pp. 77–93. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-45058-0_6

    Chapter  Google Scholar 

  20. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S., Wada, K.: Gathering on rings for myopic asynchronous robots with lights. In: OPODIS 2019, pp. 27:1–27:17 (2019)

    Google Scholar 

  21. Lukovszki, T., Meyer auf der Heide, F.: Fast collisionless pattern formation by anonymous, position-aware robots. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878, pp. 248–262. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14472-6_17

    Chapter  Google Scholar 

  22. Luna, G.D., Flocchini, P., Chaudhuri, S.G., Poloni, F., Santoro, N., Viglietta, G.: Mutual visibility by luminous robots without collisions. Inf. Comput. 254(3), 392–418 (2017)

    Article  MathSciNet  Google Scholar 

  23. Ooshita, F., Tixeuil, S.: Ring exploration with myopic luminous robots. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 301–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_20

    Chapter  Google Scholar 

  24. Peleg, D.: Distributed coordination algorithms for mobile robot swarms: new directions and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.) IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/11603771_1

    Chapter  Google Scholar 

  25. Sharma, G., Vaidyanathan, R., Trahan, J.L.: Constant-time complete visibility for asynchronous robots with lights. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 265–281. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_18

    Chapter  Google Scholar 

  26. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: Complete visibility for robots with lights in O(1) time. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 327–345. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9_26

    Chapter  Google Scholar 

  27. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: O(log N)-time complete visibility for asynchronous robots with lights. In: IPDPS 2017, pp. 513–522 (2017)

    Google Scholar 

  28. Tanenbaum, A.S., Wetherall, D.J.: Computer Networks, 5th edn. Prentice Hall Press, London (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Lukovszki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hideg, A., Lukovszki, T. (2020). Asynchronous Filling by Myopic Luminous Robots. In: Pinotti, C.M., Navarra, A., Bagchi, A. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2020. Lecture Notes in Computer Science(), vol 12503. Springer, Cham. https://doi.org/10.1007/978-3-030-62401-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62401-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62400-2

  • Online ISBN: 978-3-030-62401-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics