Skip to main content

Connected Reconfiguration of Lattice-Based Cellular Structures by Finite-Memory Robots

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2020)

Abstract

We provide algorithmic methods for reconfiguration of lattice-based cellular structures by finite-state robots, motivated by large-scale constructions in space. We present algorithms that are able to detect and reconfigure arbitrary polyominoes, while also preserving connectivity of a structure during reconfiguration; we also provide mathematical proofs and performance guarantees. Specific results include methods for determining a bounding box, scaling a given arrangement, and adapting more general algorithms for transforming polyominoes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Rahman, A., et al.: Space ants: constructing and reconfiguring large-scale structures with finite automata. In: Symposium on Computational Geometry (SoCG), pp. 73:1–73:7 (2020). https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2020/Space_final.mp4

  2. Bender, M.A., Slonim, D.K.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Symposium on Foundations of Computer Science (FOCS), pp. 75–85 (1994)

    Google Scholar 

  3. Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to search than graphs). In: Symposium on Foundations of Computer Science (FOCS), pp. 132–142 (1978)

    Google Scholar 

  4. Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.: Multirobot tree and graph exploration. IEEE Trans. Robot. 27(4), 707–717 (2011)

    Article  Google Scholar 

  5. Czyzowicz, J., Dobrev, S., Gasieniec, L., Ilcinkas, D., Jansson, J., Klasing, R., Lignos, I., Martin, R., Sadakane, K., Sung, W.-K.: More efficient periodic traversal in anonymous undirected graphs. Theor. Comput. Sci. 444, 60–76 (2012)

    Article  MathSciNet  Google Scholar 

  6. D’Angelo, G., D’Emidio, M., Das, S., Navarra, A., Prencipe, G.: Leader election and compaction for asynchronous silent programmable matter. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pp. 276–284 (2020)

    Google Scholar 

  7. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of unknown graphs by multiple agents. Theor. Comput. Sci. 385(1), 34–48 (2007)

    Article  MathSciNet  Google Scholar 

  8. Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Improved leader election for self-organizing programmable matter. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 127–140. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72751-6_10

    Chapter  Google Scholar 

  9. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Brief announcement: amoebot - a new model for programmable matter. In: ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 220–222 (2014)

    Google Scholar 

  10. Derakhshandeh, Z., Gmyr, R., Porter, A., Richa, A.W., Scheideler, C., Strothmann, T.: On the runtime of universal coating for programmable matter. In: Rondelez, Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 148–164. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43994-5_10

    Chapter  Google Scholar 

  11. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: An algorithmic framework for shape formation problems in self-organizing particle systems. In: International Conference on Nanoscale Computing and Communication (NANOCOM), pp. 21:1–21:2 (2015)

    Google Scholar 

  12. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Universal coating for programmable matter. Theor. Comput. Sci. 671, 56–68 (2017)

    Article  MathSciNet  Google Scholar 

  13. Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A.W., Scheideler, C.: Leader election and shape formation with self-organizing programmable matter. In: International Conference on DNA Computing and Molecular Programming (DNA), pp. 117–132 (2015)

    Google Scholar 

  14. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.: Shape formation by programmable particles. Distrib. Comput. 33(1), 69–101 (2019). https://doi.org/10.1007/s00446-019-00350-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51(1), 38–63 (2004)

    Article  MathSciNet  Google Scholar 

  16. Fekete, S.P., Gmyr, R., Hugo, S., Keldenich, P., Scheffer, C., Schmidt, A.: CADbots: algorithmic aspects of manipulating programmable matter with finite automata. In: Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S. (eds.) WAFR 2018. SPAR, vol. 14, pp. 727–743. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44051-0_42

    Chapter  Google Scholar 

  17. Fekete, S.P., Niehs, E., Scheffer, C., Schmidt, A.: Connected assembly and reconfiguration by finite automata. CoRR (2019)

    Google Scholar 

  18. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidelberg (2005). https://doi.org/10.1007/11561071_4

    Chapter  Google Scholar 

  19. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)

    Article  MathSciNet  Google Scholar 

  20. Fraigniaud, P., Ilcinkas, D.: Digraphs exploration with little memory. In: Symposium on Theoretical Aspects of Computer Science (STACS), pp. 246–257 (2004)

    Google Scholar 

  21. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)

    Article  MathSciNet  Google Scholar 

  22. Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 585–594 (2007)

    Google Scholar 

  23. Gąsieniec, L., Radzik, T.: Memory efficient anonymous graph exploration. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 14–29. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92248-3_2

    Chapter  MATH  Google Scholar 

  24. Gmyr, R., Hinnenthal, K., Kostitsyna, I., Kuhn, F., Rudolph, D., Scheideler, C.: Shape recognition by a finite automaton robot. In: International Symposium on Mathematical Foundations of Computer Science (MFCS), pp. 52:1–52:15 (2018)

    Google Scholar 

  25. Gmyr, R., Hinnenthal, K., Kostitsyna, I., Kuhn, F., Rudolph, D., Scheideler, C., Strothmann, T.: Forming tile shapes with simple robots. In: International Conference on DNA Computing and Molecular Programming (DNA), pp. 122–138 (2018)

    Google Scholar 

  26. Gmyr, R., Kostitsyna, I., Kuhn, F., Scheideler, C., Strothmann, T.: Forming tile shapes with a single robot. In: European Workshop on Computational Geometry (EuroCG), pp. 9–12 (2017)

    Google Scholar 

  27. Gregg, C.E., Jenett, B., Cheung, K.C.: Assembled, modular hardware architectures - what price reconfigurability? In: IEEE Aerospace Conference, pp. 1–10 (2019)

    Google Scholar 

  28. Gregg, C.E., Kim, J.H., Cheung, K.C.: Ultra-light and scalable composite lattice materials. Adv. Eng. Mater. 20(9), 1800213 (2018)

    Article  Google Scholar 

  29. Hurtado, F., Molina, E., Ramaswami, S., Sacristán, V.: Distributed reconfiguration of 2D lattice-based modular robotic systems. Auton. Robots 38(4), 383–413 (2015). https://doi.org/10.1007/s10514-015-9421-8

    Article  Google Scholar 

  30. Jenett, B., Cellucci, D.: A mobile robot for locomotion through a 3D periodic lattice environment. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5474–5479 (2017)

    Google Scholar 

  31. Jenett, B., Cellucci, D., Gregg, C., Cheung, K.: Meso-scale digital materials: modular, reconfigurable, lattice-based structures. In: ASME International Manufacturing Science and Engineering Conference (MSEC) (2016)

    Google Scholar 

  32. Jenett, B., Cheung, K.: BILL-E: robotic platform for locomotion and manipulation of lightweight space structures. In: AIAA/AHS Adaptive Structures Conference, p. 1876 (2017)

    Google Scholar 

  33. Kosowski, A., Navarra, A.: Graph decomposition for memoryless periodic exploration. Algorithmica 63(1–2), 26–38 (2012)

    Article  MathSciNet  Google Scholar 

  34. Niehs, E., et al.: Recognition and reconfiguration of lattice-based cellular structures by simple robots. In: IEEE International Conference on Robotics and Automation (ICRA) (2020, to appear). https://www.ibr.cs.tu-bs.de/users/fekete/hp/publications/PDF/2020-Automata_ICRA.pdf

  35. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33(2), 281–295 (1999)

    Article  MathSciNet  Google Scholar 

  36. Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: 4th Conference on Innovations in Theoretical Computer Science (IITCS), pp. 353–354 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fekete, S.P., Niehs, E., Scheffer, C., Schmidt, A. (2020). Connected Reconfiguration of Lattice-Based Cellular Structures by Finite-Memory Robots. In: Pinotti, C.M., Navarra, A., Bagchi, A. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2020. Lecture Notes in Computer Science(), vol 12503. Springer, Cham. https://doi.org/10.1007/978-3-030-62401-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62401-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62400-2

  • Online ISBN: 978-3-030-62401-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics