Skip to main content

VectorTSP: A Traveling Salesperson Problem with Racetrack-Like Acceleration Constraints

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2020)

Abstract

We study a new version of the Euclidean TSP called VectorTSP (VTSP for short) where a mobile entity is allowed to move according to a set of physical constraints inspired from the pen-and-pencil game Racetrack (also known as Vector Racer). In contrast to other versions of TSP accounting for physical constraints, such as Dubins TSP, the spirit of this model is that (1) no speed limitations apply, and (2) inertia depends on the current velocity. As such, this model is closer to typical models considered in path planning problems, although applied here to the visit of n cities in a non-predetermined order.

We motivate and introduce the VectorTSP problem, discussing fundamental differences with previous versions of TSP. In particular, an optimal visit order for ETSP may not be optimal for VTSP. We show that VectorTSP is NP-hard, and in the other direction, that VectorTSP reduces to GroupTSP in polynomial time (although with a significant blow-up in size). On the algorithmic side, we formulate the search for a solution as an interactive scheme between a high-level algorithm and a trajectory oracle, the former being responsible for computing the visit order and the latter for computing the cost (or the trajectory) for a given visit order. We present algorithms for both, and we demonstrate and quantify through experiments that this approach frequently finds a better solution than the optimal trajectory realizing an optimal ETSP tour, which legitimates the problem itself.

Supported by ANR project ESTATE (ANR-16-CE25-0009-03).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006)

    Google Scholar 

  2. Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering salesman problem. Discrete Appl. Math. 55(3), 197–218 (1994)

    Article  MathSciNet  Google Scholar 

  3. Arora, S.: Polynomial time approximation schemes for Euclidean TSP and other geometric problems. In: Proceedings of 37th Conference on Foundations of Computer Science, pp. 2–11. IEEE (1996)

    Google Scholar 

  4. Bekos, M.A., Bruckdorfer, T., Förster, H., Kaufmann, M., Poschenrieder, S., Stüber, T.: Algorithms and insights for racetrack. Theoret. Comput. Sci. 748, 2–16 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bjorklund, A.: Determinant sums for undirected Hamiltonicity. SIAM J. Comput. 43(1), 280–299 (2014)

    Article  MathSciNet  Google Scholar 

  6. Canny, J., Donald, B., Reif, J., Xavier, P.: On the complexity of kinodynamic planning. IEEE (1988)

    Google Scholar 

  7. Canny, J., Rege, A., Reif, J.: An exact algorithm for kinodynamic planning in the plane. Discrete Comput. Geom. 6(3), 461–484 (1991)

    Article  MathSciNet  Google Scholar 

  8. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group, Technical report (1976)

    Google Scholar 

  9. Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6), 791–812 (1958)

    Article  MathSciNet  Google Scholar 

  10. Donald, B., Xavier, P., Canny, J., Reif, J.: Kinodynamic motion planning. J. ACM (JACM) 40(5), 1048–1066 (1993)

    Article  MathSciNet  Google Scholar 

  11. Erickson, J.: Ernie’s 3d pancakes: “how hard is optimal racing?” (2009). http://3dpancakes.typepad.com/ernie/2009/06/how-hard-is-optimal-racing.html

  12. Gardner, M.: Sim, chomp and race track-new games for intellect (and not for lady luck). Sci. Ame. 228(1), 108–115 (1973)

    Article  Google Scholar 

  13. Garey, M.R., Graham, R.L., Johnson, D.S.: Some NP-complete geometric problems, pp. 10–22 (1976)

    Google Scholar 

  14. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)

    Article  MathSciNet  Google Scholar 

  15. Holzer, M., McKenzie, P.: The computational complexity of racetrack, pp. 260–271 (2010)

    Google Scholar 

  16. Karp, R.M.: Reducibility among combinatorial problems, pp. 85–103 (1972)

    Google Scholar 

  17. Le Ny, J., Frazzoli, E., Feron, E.: The curvature-constrained traveling salesman problem for high point densities. In: 46th IEEE Conference on Decision and Control, pp. 5985–5990. IEEE (2007)

    Google Scholar 

  18. Mitchell, J.S.: Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

    Article  MathSciNet  Google Scholar 

  19. Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem. INFOR: Inf. Syst. Oper. Res. 31(1), 39–44 (1993)

    MATH  Google Scholar 

  20. Olsson, R., Tarandi, A.: A genetic algorithm in the game racetrack (2011)

    Google Scholar 

  21. Orponen, P., Mannila, H.: On approximation preserving reductions: complete problems and robust measures (revised version). University of Helsinki, Department of Computer Science (1990)

    Google Scholar 

  22. Papadimitriou, C., Vempala\(\dagger \), S.: On the approximability of the traveling salesman problem. In: Conference Proceedings of the Annual ACM Symposium on Theory of Computing, vol. 26, pp. 101–120, February 2006. https://doi.org/10.1007/s00493-006-0008-z

  23. Papadimitriou, C.H.: The Euclidean travelling salesman problem is NP-complete. Theoret. Comput. Sci. 4(3), 237–244 (1977)

    Article  MathSciNet  Google Scholar 

  24. Márquez, A., Ramos, P., Urrutia, J. (eds.): EGC 2011. LNCS, vol. 7579. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34191-5

    Book  Google Scholar 

  25. Savla, K., Bullo, F., Frazzoli, E.: Traveling salesperson problems for a double integrator. IEEE Trans. Autom. Control 54(4), 788–793 (2009)

    Article  MathSciNet  Google Scholar 

  26. Schmid, J.: Vectorrace - finding the fastest path through a two-dimensional track. http://schmid.dk/articles/vectorRace.pdf (2005)

  27. Yuan, Y., Peng, Y.: RaceTrack: an approximation algorithm for the mobile sink routing problem. In: Nikolaidis, I., Wu, K. (eds.) ADHOC-NOW 2010. LNCS, vol. 6288, pp. 135–148. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14785-2_11

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arnaud Casteigts , Mathieu Raffinot or Jason Schoeters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casteigts, A., Raffinot, M., Schoeters, J. (2020). VectorTSP: A Traveling Salesperson Problem with Racetrack-Like Acceleration Constraints. In: Pinotti, C.M., Navarra, A., Bagchi, A. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2020. Lecture Notes in Computer Science(), vol 12503. Springer, Cham. https://doi.org/10.1007/978-3-030-62401-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62401-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62400-2

  • Online ISBN: 978-3-030-62401-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics