Skip to main content

Conic Formation in Presence of Faulty Robots

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2020)

Abstract

Pattern formation is one of the most fundamental problems in distributed computing, which has recently received much attention. In this paper, we initiate the study of distributed pattern formation in situations when some robots can be faulty. In particular, we consider the well-established look-compute-move model with oblivious, anonymous robots. We first present lower bounds and show that any deterministic algorithm takes at least two rounds to form simple patterns in the presence of faulty robots. We then present distributed algorithms for our problem which match this bound, for conic sections: in at most two rounds, robots form lines, circles and parabola tolerating \(f=2,3\) and 4 faults, respectively. For \(f=5\), the target patterns are parabola, hyperbola and ellipse. We show that the resulting pattern includes the f faulty robots in the pattern of n robots, where \(n \ge 2f+1\), and that \(f< n < 2f+1\) robots cannot form such patterns. We conclude by discussing several relaxations and extensions.

D. Pattanayak—Visit to University of Vienna is supported by the Overseas Visiting Doctoral Fellowship, 2018 Award No. ODF/2018/001055 by the Science and Engineering Research Board (SERB), Government of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This assumption allows us to have a unique ordering of the robots  [8].

  2. 2.

    As any set of non-faulty robots that share a position will always perform the same actions from then on and be indistinguishable from each other.

  3. 3.

    That is a point for \(f=1\), a line for \(f=2\), a circle for \(f=3\), a parabola for \(f=4\), and an ellipse or parabola or hyperbola for \(f=5\).

  4. 4.

    Two parabolas intersect at 4 points, which can be the common points between two parabola patterns.

  5. 5.

    The latus rectum is the line that passes through the focus of the parabola and parallel to the directrix.

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)

    Article  MathSciNet  Google Scholar 

  2. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibility results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 178–190. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03089-0_13

    Chapter  Google Scholar 

  3. Bhagat, S., Mukhopadhyaya, K.: Fault-tolerant gathering of semi-synchronous robots. In: Proceedings of the 18th International Conference on Distributed Computing and Networking, Hyderabad, India, 5–7 January 2017, p. 6 (2017)

    Google Scholar 

  4. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: IEEE 33rd International Conference on Distributed Computing Systems, ICDCS 2013, Philadelphia, Pennsylvania, USA, 8–11 July 2013, pp. 337–346 (2013)

    Google Scholar 

  5. Bramas, Q., Tixeuil, S.: Wait-free gathering without chirality. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 313–327. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2_22

    Chapter  MATH  Google Scholar 

  6. Bramas, Q., Tixeuil, S.: Brief announcement: Probabilistic asynchronous arbitrary pattern formation. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, 25–28 July 2016, pp. 443–445 (2016)

    Google Scholar 

  7. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Bonabeau, E., Theraula, G.: Self-organization in Biological Systems. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  8. Chaudhuri, S.G., Mukhopadhyaya, K.: Leader election and gathering for asynchronous fat robots without common chirality. J. Discret. Algorithms 33, 171–192 (2015)

    Article  MathSciNet  Google Scholar 

  9. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

    Article  MathSciNet  Google Scholar 

  10. Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In: Proceedings of SIROCCO, pp. 79–88 (2004)

    Google Scholar 

  11. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

    Article  MathSciNet  Google Scholar 

  12. Das, S., Flocchini, P., Prencipe, G., Santoro, N.: Forming sequences of patterns with luminous robots. IEEE Access 8, 90577–90597 (2020)

    Article  Google Scholar 

  13. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Forming sequences of geometric patterns with oblivious mobile robots. Distrib. Comput. 28(2), 131–145 (2014). https://doi.org/10.1007/s00446-014-0220-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Défago, X., Potop-Butucaru, M.G., Clément, J., Messika, S., Parvédy, P.R.: Fault and byzantine tolerant self-stabilizing mobile robots gathering - feasibility study. CoRR abs/1602.05546 (2016)

    Google Scholar 

  15. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, San Rafael (2012)

    Book  Google Scholar 

  16. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by mobile robots: uniform circle formation. Distrib. Comput. 30(6), 413–457 (2016). https://doi.org/10.1007/s00446-016-0291-x

    Article  MathSciNet  MATH  Google Scholar 

  17. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005)

    Article  MathSciNet  Google Scholar 

  18. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3), 412–447 (2008)

    Article  MathSciNet  Google Scholar 

  19. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)

    Article  MathSciNet  Google Scholar 

  20. Pattanayak, D., Foerster, K., Mandal, P.S., Schmid, S.: Conic formation in presence of faulty robots. CoRR abs/2003.01914 (2020). https://arxiv.org/abs/2003.01914

  21. Pattanayak, D., Mondal, K., Ramesh, H., Mandal, P.S.: Gathering of mobile robots with weak multiplicity detection in presence of crash-faults. J. Parallel Distrib. Comput. 123, 145–155 (2019)

    Article  Google Scholar 

  22. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)

    Article  MathSciNet  Google Scholar 

  23. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  Google Scholar 

  24. Tomita, Y., Yamauchi, Y., Kijima, S., Yamashita, M.: Plane formation by synchronous mobile robots without chirality. In: 21st International Conference on Principles of Distributed Systems, OPODIS 2017, Lisbon, Portugal, 18–20 December 2017, pp. 13:1–13:17 (2017)

    Google Scholar 

  25. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)

    Article  MathSciNet  Google Scholar 

  26. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by synchronous mobile robots in the three-dimensional euclidean space. J. ACM 64(3), 16:1–16:43 (2017)

    Google Scholar 

  27. Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited visibility. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 201–212. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03578-9_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Sarathi Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pattanayak, D., Foerster, KT., Mandal, P.S., Schmid, S. (2020). Conic Formation in Presence of Faulty Robots. In: Pinotti, C.M., Navarra, A., Bagchi, A. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2020. Lecture Notes in Computer Science(), vol 12503. Springer, Cham. https://doi.org/10.1007/978-3-030-62401-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62401-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62400-2

  • Online ISBN: 978-3-030-62401-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics