Skip to main content

PLSGAN: A Power-Law-modified Sequential Generative Adversarial Network for Graph Generation

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2020 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12342))

Included in the following conference series:

  • 1409 Accesses

Abstract

Characterizing and generating graphs is essential for modeling Internet and social network, constructing knowledge graph and discovering new chemical compound molecule. However, the non-unique and high-dimensional nature of graphs, as well as complex community structures and global node/edge-dependent relationships, prevent graphs from being generated directly from observed graphs. As a well-known deep learning framework, generative adversarial networks (GANs) provide a feasible way, and have been applied to graph generation. In this paper, we propose PLSGAN, a Power-Law-modified Sequential Generative Adversarial Network to address aforementioned challenges of graph generation. First, PLSGAN coverts graph topology to node-edge sequences by sampling based on biased random walk. Fake sequences are produced by trained generator and assembled to get target graph. Second, power law distribution of node degree is taken into consideration to modify the learning procedure of GANs. Last, PLSGAN is evaluated on various datasets. Experimental results show that PLSGAN can generate graphs with topological features of observed graphs, exhibit strong generalization properties and outperform state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74(1), 47 (2002)

    Article  MathSciNet  Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  3. Bojchevski, A., Shchur, O., Zügner, D., Günnemann, S.: Netgan: generating graphs via random walks. arXiv preprint arXiv:1803.00816 (2018)

  4. De Cao, N., Kipf, T.: Molgan: an implicit generative model for small molecular graphs. arXiv preprint arXiv:1805.11973 (2018)

  5. Dixon, W.J., Massey, Jr., F.J.: Introduction to statistical analysis (1951)

    Google Scholar 

  6. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: ACM SIGCOMM Computer Communication Review, vol. 29, pp. 251–262. ACM (1999)

    Google Scholar 

  7. Fan, S., Huang, B.: Deep generative models for generating labeled graphs (2019)

    Google Scholar 

  8. Fich, E.M., Shivdasani, A.: Financial fraud, director reputation, and shareholder wealth. J. Financ. Econ. 86(2), 306–336 (2007)

    Article  Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  10. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  11. Grover, A., Zweig, A., Ermon, S.: Graphite: iterative generative modeling of graphs. arXiv preprint arXiv:1803.10459 (2018)

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  13. Jin, C., Chen, Q., Jamin, S.: Inet: internet topology generator (2000)

    Google Scholar 

  14. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  15. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187. ACM (2005)

    Google Scholar 

  16. Li, Y., Vinyals, O., Dyer, C., Pascanu, R., Battaglia, P.: Learning deep generative models of graphs. arXiv preprint arXiv:1803.03324 (2018)

  17. Ma, T., Chen, J., Xiao, C.: Constrained generation of semantically valid graphs via regularizing variational autoencoders. In: Advances in Neural Information Processing Systems, pp. 7113–7124 (2018)

    Google Scholar 

  18. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  19. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70. pp. 2642–2651. JMLR. org (2017)

    Google Scholar 

  20. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

    Article  Google Scholar 

  21. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  22. Simonovsky, M., Komodakis, N.: GraphVAE: towards generation of small graphs using variational autoencoders. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 412–422. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_41

    Chapter  Google Scholar 

  23. West, D.B., et al.: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  24. Winick, J., Jamin, S.: Inet-3.0: Internet topology generator. Technical report, Technical Report CSE-TR-456-02, University of Michigan (2002)

    Google Scholar 

  25. You, J., Ying, R., Ren, X., Hamilton, W.L., Leskovec, J.: GraphRNN: a deep generative model for graphs. arXiv preprint arXiv:1802.08773 (2018)

  26. Zhou, D., Zheng, L., Xu, J., He, J.: Misc-GAN: a multi-scale generative model for graphs. Front. Big Data 2, 3 (2019). https://doi.org/10.3389/fdata

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (NO. U1936206, U1836109) and “the Fundamental Research Funds for the Central Universities”, Nankai University (No. 63201209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiwei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, Q., Yin, Y., Lian, Y., Zhang, H., Yuan, X. (2020). PLSGAN: A Power-Law-modified Sequential Generative Adversarial Network for Graph Generation. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12342. Springer, Cham. https://doi.org/10.1007/978-3-030-62005-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62005-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62004-2

  • Online ISBN: 978-3-030-62005-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics