Skip to main content

A Lightweight Fully Convolutional Neural Network of High Accuracy Surface Defect Detection

  • Conference paper
  • First Online:
Book cover Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12397))

Included in the following conference series:

Abstract

Surface defect detection is an indispensable step in the production process. Recent researches based on deep learning have paid primarily attention to improving accuracy. However, it is difficult to apply in real situation, because of huge number of parameters and the strict hardware requirements. In this paper, a lightweight fully convolutional neural network, named LFCSDD, is proposed. The parameters of our model are 11x fewer than baselines at least, and obtain the accuracy of 99.72% and 98.74% on benchmark defect datasets, DAGM 2007 and KolektorSDD, respectively, outperforming all the baselines. In addition, our model can process the images with different sizes, which is verified on the RSDDs with the accuracy of 97.00%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://hci.iwr.uni-heidelberg.de/node/3616.

References

  1. Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S., Büyüköztürk, O.: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput. Aided Civ. Infrastruct. Eng. 33(9), 731–747 (2018)

    Article  Google Scholar 

  2. Chondronasios, A., Popov, I., Jordanov, I.: Feature selection for surface defect classification of extruded aluminum profiles. Int. J. Adv. Manuf. Technol. 83(1–4), 33–41 (2016)

    Article  Google Scholar 

  3. Coren, S., Girgus, J.S., Day, R.: Visual spatial illusions: many explanations. Science 179(4072), 503–504 (1973)

    Article  Google Scholar 

  4. Day, R.H.: Visual spatial illusions: a general explanation. Science 175(4028), 1335–1340 (1972)

    Article  Google Scholar 

  5. Gan, J., Li, Q., Wang, J., Yu, H.: A hierarchical extractor-based visual rail surface inspection system. IEEE Sens. J. 17(23), 7935–7944 (2017)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  7. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  10. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  12. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  13. Ren, R., Hung, T., Tan, K.C.: A generic deep-learning-based approach for automated surface inspection. IEEE Trans. Cybern. 48(3), 929–940 (2017)

    Article  Google Scholar 

  14. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  15. Schoonard, J.W., Gould, J.D.: Field of view and target uncertainty in visual search and inspection. Hum. Factors 15(1), 33–42 (1973)

    Article  Google Scholar 

  16. Shumin, D., Zhoufeng, L., Chunlei, L.: Adaboost learning for fabric defect detection based on HOG and SVM. In: 2011 International Conference on Multimedia Technology, pp. 2903–2906. IEEE (2011)

    Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  18. Snyder, C.R.: Selection, inspection, and naming in visual search. J. Exp. Psychol. 92(3), 428 (1972)

    Article  Google Scholar 

  19. Song, K., Yan, Y.: A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl. Surf. Sci. 285, 858–864 (2013)

    Article  Google Scholar 

  20. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: 31st AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  21. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  22. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  23. Tabernik, D., Šela, S., Skvarč, J., Skočaj, D.: Segmentation-based deep-learning approach for surface-defect detection. J. Intell. Manuf. 31(3), 759–776 (2019). https://doi.org/10.1007/s10845-019-01476-x

    Article  Google Scholar 

  24. Tao, X., Zhang, D., Ma, W., Liu, X., Xu, D.: Automatic metallic surface defect detection and recognition with convolutional neural networks. Appl. Sci. 8(9), 1575 (2018)

    Article  Google Scholar 

  25. Wang, T., Chen, Y., Qiao, M., Snoussi, H.: A fast and robust convolutional neural network-based defect detection model in product quality control. Int. J. Adv. Manuf. Technol. 94(9–12), 3465–3471 (2018)

    Article  Google Scholar 

  26. Zweig, M.H., Campbell, G.: Receiver-operating characteristic (roc) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39(4), 561–577 (1993)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key Research and Development Plan of China (No. 2018YFC2000605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Chen, Y., Gu, Y., Ouyang, J., Wang, J., Zeng, N. (2020). A Lightweight Fully Convolutional Neural Network of High Accuracy Surface Defect Detection. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12397. Springer, Cham. https://doi.org/10.1007/978-3-030-61616-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61616-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61615-1

  • Online ISBN: 978-3-030-61616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics