Skip to main content

The Effect of Batch Normalization in the Symmetric Phase

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12397))

Included in the following conference series:

  • 2178 Accesses

Abstract

Learning neural networks has long been known to be difficult. One of the causes of such difficulties is thought to be the equilibrium points caused by the symmetry between the weights of the neural network. Such an equilibrium point is known to delay neural network training. However, neural networks have been widely used in recent years largely because of the development of methods that make learning easier. One such technique is batch normalization, which is empirically known to speed up learning. Therefore, if the equilibrium point due to symmetry truly affects the neural network learning, and batch normalization speeds up the learning, batch normalization should help escape from such equilibrium points. Therefore, we analyze whether batch normalization helps escape from such equilibrium points by a method called statistical mechanical analysis. By examining the eigenvalue of the Hessian matrix of the generalization error at the equilibrium point, we find that batch normalization delays escape from poor equilibrium points. This contradicts the empirically known finding of speeding up learning, and we discuss why we obtained this result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S.: Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998)

    Article  Google Scholar 

  2. Amari, S., Ozeki, T., Karakida, R., Yoshida, Y., Okada, M.: Dynamics of learning in MLP: natural gradient and singularity revisited. Neural Comput. 30(1), 1–33 (2018)

    Article  MathSciNet  Google Scholar 

  3. Amari, S., Park, H., Ozeki, T.: Singularities affect dynamics of learning in neuromanifolds. Neural Comput. 18(5), 1007–1065 (2006)

    Article  MathSciNet  Google Scholar 

  4. Arora, S., Li, Z., Lyu, K.: Theorical analysis of auto rate-tuning by batch normalization. arXiv preprint arXiv:1812.03981 (2018)

  5. Arpit, D., et al.: A closer look at memorization in deep networks. In: Proceedings of the 34th International Conference on Machine Learning (2017)

    Google Scholar 

  6. Biehl, M., Schwarze, H.: Learning by on-line gradient descent. J. Phys. A: Math. Gen. 28(3), 643 (1995)

    Article  MathSciNet  Google Scholar 

  7. Bjorck, J., Gomes, G., Selman, B., Weinberger, K.Q.: Understanding batch normalization. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  8. Chaudhari, P., Soatto, S.: Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks. In: 6th International Conference on Learning Representations (2018)

    Google Scholar 

  9. Cousseau, F., Ozeki, T., Amari, S.: Dynamics of learning in multilayer perceptrons near singularities. IEEE Trans. Neural Netw. 19(8), 1313–1328 (2008)

    Article  Google Scholar 

  10. Fukumizu, K.: A regularity condition of the information matrix of a multilayer perception network. Neural Netw. 9(5), 871–879 (1996)

    Article  Google Scholar 

  11. Fukumizu, K., Amari, S.: Local minima and plateaus in hierarchical structures of multilayer perceptrons. Neural Netw. 13, 317–327 (2000)

    Article  Google Scholar 

  12. Goldt, S., Advani, M.S., Saxe, A.M., Krzakala, F., Zdeborova, L.: Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  13. Goldt, S., Mezard, M., Krzakala, F., Zdeborova, L.: Modelling the influence of data structure on learning in neural networks: the hidden manifold model. arXiv preprint arXiv:1909.11500 (2019)

  14. Gunasekar, S., Woodworth, B.E., Bhojanapalli, S., Neyshabur, B., Srebro, N.: Implicit regularization in matrix factorization. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  15. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  16. Hassibi, B., Stork, D.G.: Second order derivatives for network pruning: optimal brain surgeon. In: Advances in Neural Information Processing Systems, vol. 6 (1993)

    Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Flat minima. Neural Comput. 9(1), 1–42 (1997)

    Article  Google Scholar 

  18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning (2015)

    Google Scholar 

  19. Jastrzebski, S., et al.: Three factors influencing minima in SGD. arXiv preprint arXiv:1711.04623 (2017)

  20. Karakida, R., Akaho, S., Amari, S.: The normalization method for alleviating pathological sharpness in wide neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  21. Karakida, R., Akaho, S., Amari, S.: Universal statistics of fisher information in deep neural networks: mean field approach. In: Chaudhuri, K., Sugiyama, M. (eds.) Proceedings of Machine Learning Research, 16–18 April 2019, vol. 89, pp. 1032–1041. PMLR (2019)

    Google Scholar 

  22. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch training for deep learning: generalization gap and sharp minima. In: 5th International Conference on Learning Representations (2017)

    Google Scholar 

  23. Kohler, J., Daneshmand, H., Lucchi, A., Zhou, M., Neymeyr, K., Hofmann, T.: Exponential convergence rates for batch normalization: the power of length-direction decoupling in non-convex optimization. arXiv preprint arXiv:1805.10694 (2018)

  24. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural Information Processing Systems, vol. 3 (1990)

    Google Scholar 

  25. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016)

  26. Luo, P., Wang, X., Shao, W., Peng, Z.: Towards understanding regularization in batch normalization. arXiv preprint arXiv:1809.00846 (2018)

  27. Mandt, S., Hoffman, M., Blei, D.: A variational analysis of stochastic gradient algorithms. In: Proceedings of the 33nd International Conference on Machine Learning (2016)

    Google Scholar 

  28. Neyshabur, B., Tomioka, R., Salakhutdinov, R., Srebro, N.: Geometry of optimization and implicit regularization in deep learning. arXiv preprint arXiv:1705.03071 (2017)

  29. Neyshabur, B., Tomioka, R., Srebro, N.: In search of the real inductive bias: on the role of implicit regularization in deep learning. In: 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  30. Riegler, P., Biehl, M.: On-line backpropagation in two-layered neural networks. J. Phys. A 28, L507–L513 (1995)

    Article  Google Scholar 

  31. Saad, D., Solla, S.A.: Dynamics of on-line gradient descent learning for multilayer neural networks. In: Advances in Neural Information Processing Systems, vol. 8 (1995)

    Google Scholar 

  32. Saad, D., Solla, S.A.: Exact solution for on-line learning in multilayer neural networks. Phys. Rev. Lett. 74(41), 4337–4340 (1995)

    Article  Google Scholar 

  33. Saad, D., Solla, S.A.: On-line learning in soft committee machines. Phys. Rev. E 52(4), 4225–4243 (1995)

    Article  Google Scholar 

  34. Santurkar, S., Tsipras, D., Ilyas, A., Mardy, A.: How does batch normalization help optimization? arXiv preprint arXiv:1805.11604 (2018)

  35. Schwarze, H.: Learning a rule in a multilayer neural network. J. Phys. A 26, 5781–5794 (1993)

    Article  MathSciNet  Google Scholar 

  36. Seung, H.S., Somopolinsky, H., Tishby, N.: Statistical mechanics of learning from examples. Phys. Rev. A 45(8), 6056–6091 (1992)

    Article  MathSciNet  Google Scholar 

  37. Watanabe, S.: Algebraic geometrical methods for hierarchical learning machines. Neural Netw. 14(8), 1049–1060 (2001)

    Article  Google Scholar 

  38. Watanabe, S., Amari, S.: Learning coefficients of layered models when the true distribution mismatches the singularities. Neural Comput. 15(5), 1011–1033 (2003)

    Article  Google Scholar 

  39. Wei, H., Amari, S.: Dynamics of learning near singularities in radial basis function networks. Neural Netw. 21(7), 989–1005 (2008)

    Article  Google Scholar 

  40. Wei, H., Zhang, J., Cousseau, F., Ozeki, T., Amari, S.: Dynamics of learning in multilayer perceptrons near singularities. Neural Comput. 20(3), 813–842 (2008)

    Article  MathSciNet  Google Scholar 

  41. West, A.H.L., Saad, D., Nabney, I.T.: The learning dynamics of a universal approximator. In: Advances in Neural Information Processing Systems, vol. 9 (1996)

    Google Scholar 

  42. Yoshida, Y., Karakida, R., Okada, M., Amari, S.: Statistical mechanical analysis of learning dynamics of two-layer perceptron with multiple output units. J. Phys. A 52(18), 184002 (2019)

    Article  MathSciNet  Google Scholar 

  43. Yoshida, Y., Okada, M.: Data-dependence of plateau phenomenon in learning with neural network – statistical mechanical analysis. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Takagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Takagi, S., Yoshida, Y., Okada, M. (2020). The Effect of Batch Normalization in the Symmetric Phase. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12397. Springer, Cham. https://doi.org/10.1007/978-3-030-61616-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61616-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61615-1

  • Online ISBN: 978-3-030-61616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics