Skip to main content

Prediction Stability as a Criterion in Active Learning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12397))

Included in the following conference series:

  • 2132 Accesses

Abstract

Recent breakthroughs made by deep learning rely heavily on a large number of annotated samples. To overcome this shortcoming, active learning is a possible solution. Besides the previous active learning algorithms that only adopted information after training, we propose a new class of methods named sequential-based method based on the information during training. A specific criterion of active learning called prediction stability is proposed to prove the feasibility of sequential-based methods. We design a toy model to explain the principle of our proposed method and pointed out a possible defect of the former uncertainty-based methods. Experiments are made on CIFAR-10 and CIFAR-100, and the results indicates that prediction stability was effective and works well on fewer-labeled datasets. Prediction stability reaches the accuracy of traditional acquisition functions like entropy on CIFAR-10, and notably outperformed them on CIFAR-100.

Junyu Liu did this work during his internship at the Hikvision Research Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_iris.html.

  2. 2.

    https://github.com/bearpaw/pytorch-classification.git.

References

  1. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  2. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(2), 179–188 (1936)

    Article  Google Scholar 

  3. Freeman, L.C.: Elementary Applied Statistics: For Students in Behavioral Science. Wiley, New York (1965)

    Google Scholar 

  4. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1183–1192. JMLR.org (2017)

    Google Scholar 

  5. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. Computer Science (2014)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  7. Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning for classification and preference learning. arXiv preprint arXiv:1112.5745 (2011)

  8. Kampffmeyer, M., Salberg, A.B., Jenssen, R.: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–9 (2016)

    Google Scholar 

  9. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report. Citeseer (2009)

    Google Scholar 

  10. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45

    Chapter  Google Scholar 

  11. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994, pp. 3–12. Springer, London (1994). https://doi.org/10.1007/978-1-4471-2099-5_1

    Chapter  Google Scholar 

  12. Liu, J., et al.: An original neural network for pulmonary tuberculosis diagnosis in radiographs. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11140, pp. 158–166. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01421-6_16

    Chapter  Google Scholar 

  13. Qu, Z., Liu, J., Liu, Y., Guan, Q., Yang, C., Zhang, Y.: OrieNet: a regression system for latent fingerprint orientation field extraction. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 436–446. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_43

    Chapter  Google Scholar 

  14. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. arXiv preprint arXiv:1708.00489 (2017)

  15. Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1070–1079. Association for Computational Linguistics (2008)

    Google Scholar 

  16. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  17. Tanguy, L., Tulechki, N., Urieli, A., Hermann, E., Raynal, C.: Natural language processing for aviation safety reports: from classification to interactive analysis. Comput. Ind. 78, 80–95 (2016)

    Article  Google Scholar 

  18. Zhou, Z., Shin, J., Zhang, L., Gurudu, S., Gotway, M., Liang, J.: Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7340–7351 (2017)

    Google Scholar 

  19. Zhu, J.J., Bento, J.: Generative adversarial active learning. arXiv preprint arXiv:1702.07956 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Li, X., Zhou, J., Shen, J. (2020). Prediction Stability as a Criterion in Active Learning. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12397. Springer, Cham. https://doi.org/10.1007/978-3-030-61616-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61616-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61615-1

  • Online ISBN: 978-3-030-61616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics