Skip to main content

Deep Convolutional Embedding for Painting Clustering: Case Study on Picasso’s Artworks

  • Conference paper
  • First Online:
Discovery Science (DS 2020)

Abstract

Clustering artworks is a very difficult task. Recognizing meaningful patterns in accordance with domain expertise and visual perception, in fact, can be extremely hard. On the other hand, applying traditional clustering and feature reduction techniques to the highly dimensional raw pixel space can be ineffective. To overcome these problems, we propose to use a deep convolutional embedding clustering framework. The model simultaneously optimizes the task of mapping the input pixel data to a latent feature space and the task of finding cluster centroids in this latent space. A quantitative and qualitative preliminary study on a collection of artworks made by Pablo Picasso shows the effectiveness of the model. The proposed method may assist in art-related tasks, in particular visual link retrieval and historical knowledge discovery in painting datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.wikiart.org.

  2. 2.

    https://www.metmuseum.org/art/collection.

  3. 3.

    https://www.kaggle.com/ikarus777/best-artworks-of-all-time.

  4. 4.

    http://artchallenge.ru.

References

  1. Barnard, K., Duygulu, P., Forsyth, D.: Clustering art. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, pp. II-II. IEEE (2001)

    Google Scholar 

  2. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theor. Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  3. Castellano, G., Castiello, C., Mencar, C., Vessio, G.: Crowd detection for drone safe landing through fully-convolutional neural networks. In: Chatzigeorgiou, A., et al. (eds.) SOFSEM 2020. LNCS, vol. 12011, pp. 301–312. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38919-2_25

    Chapter  Google Scholar 

  4. Castellano, G., Castiello, C., Mencar, C., Vessio, G.: Crowd detection in aerial images using spatial graphs and fully-convolutional neural networks. IEEE Access 8, 64534–64544 (2020)

    Article  Google Scholar 

  5. Castellano, G., Vessio, G.: Deep convolutional embedding for digitized painting clustering. arXiv preprint arXiv:2003.08597 (2020)

  6. Castellano, G., Vessio, G.: Towards a tool for visual link retrieval and knowledge discovery in painting datasets. In: Ceci, M., Ferilli, S., Poggi, A. (eds.) IRCDL 2020. CCIS, vol. 1177, pp. 105–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39905-4_11

    Chapter  Google Scholar 

  7. Cetinic, E., Lipic, T., Grgic, S.: Fine-tuning convolutional neural networks for fine art classification. Expert Syst. Appl. 114, 107–118 (2018)

    Article  Google Scholar 

  8. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)

  9. Crowley, E.J., Zisserman, A.: In search of art. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 54–70. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16178-5_4

    Chapter  Google Scholar 

  10. Crowley, E.J., Zisserman, A.: The art of detection. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 721–737. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_50

    Chapter  Google Scholar 

  11. Cupchik, G.C., Vartanian, O., Crawley, A., Mikulis, D.J.: Viewing artworks: contributions of cognitive control and perceptual facilitation to aesthetic experience. Brain Cogn. 70(1), 84–91 (2009)

    Article  Google Scholar 

  12. Garcia, N., Renoust, B., Nakashima, Y.: Context-aware embeddings for automatic art analysis. In: Proceedings of the 2019 International Conference on Multimedia Retrieval, pp. 25–33. ACM (2019)

    Google Scholar 

  13. Gultepe, E., Conturo, T.E., Makrehchi, M.: Predicting and grouping digitized paintings by style using unsupervised feature learning. J. Cult. Heritage 31, 13–23 (2018)

    Article  Google Scholar 

  14. Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) International Conference on Neural Information Processing. LNCS, vol. 10635, pp. 373–382. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70096-0_39

    Chapter  Google Scholar 

  15. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Mao, H., Cheung, M., She, J.: Deepart: learning joint representations of visual arts. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1183–1191. ACM (2017)

    Google Scholar 

  18. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  19. Spehr, M., Wallraven, C., Fleming, R.W.: Image statistics for clustering paintings according to their visual appearance. In: Computational Aesthetics 2009: Eurographics Workshop on Computational Aesthetics in Graphics, Visualization and Imaging, pp. 57–64. Eurographics (2009)

    Google Scholar 

  20. Van Noord, N., Hendriks, E., Postma, E.: Toward discovery of the artist’s style: learning to recognize artists by their artworks. IEEE Signal Process. Mag. 32(4), 46–54 (2015)

    Article  Google Scholar 

  21. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, pp. 478–487 (2016)

    Google Scholar 

  22. Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: simultaneous deep learning and clustering. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 3861–3870 (2017)

    Google Scholar 

Download references

Acknowledgement

Gennaro Vessio acknowledges funding support from the Italian Ministry of Education, University and Research through the PON AIM 1852414 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Vessio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castellano, G., Vessio, G. (2020). Deep Convolutional Embedding for Painting Clustering: Case Study on Picasso’s Artworks. In: Appice, A., Tsoumakas, G., Manolopoulos, Y., Matwin, S. (eds) Discovery Science. DS 2020. Lecture Notes in Computer Science(), vol 12323. Springer, Cham. https://doi.org/10.1007/978-3-030-61527-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61527-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61526-0

  • Online ISBN: 978-3-030-61527-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics