Skip to main content

Interpretable CNN Pruning for Preserving Scale-Covariant Features in Medical Imaging

  • Conference paper
  • First Online:
Interpretable and Annotation-Efficient Learning for Medical Image Computing (IMIMIC 2020, MIL3ID 2020, LABELS 2020)

Abstract

Image scale carries crucial information in medical imaging, e.g. the size and spatial frequency of local structures, lesions, tumors and cell nuclei. With feature transfer being a common practice, scale-invariant features implicitly learned from pretraining on ImageNet tend to be preferred over scale-covariant features. The pruning strategy in this paper proposes a way to maintain scale covariance in the transferred features. Deep learning interpretability is used to analyze the layer-wise encoding of scale information for popular architectures such as InceptionV3 and ResNet50. Interestingly, the covariance of scale peaks at central layers and decreases close to softmax. Motivated by these results, our pruning strategy removes the layers where invariance to scale is learned. The pruning operation leads to marked improvements in the regression of both nuclei areas and magnification levels of histopathology images. These are relevant applications to enlarge the existing medical datasets with open-access images as those of PubMed Central. All experiments are performed on publicly available data and the code is shared on GitHub.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Downloadable at https://keras.io/api/applications/.

  2. 2.

    https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/.

  3. 3.

    Following the same terminology, the equivariance, as opposed to covariance, implies that the function \(\phi (\cdot )\) maps an input image to a point in the same domain, i.e. \(\phi : \mathbb {R}^{h\times w} \rightarrow \mathbb {R}^{h \times w}\).

  4. 4.

    For simplicity, we omit the intercept. In Eq. (1), the intercept would be \(v_0\) with \(\phi _0(g_{\sigma }(\mathrm {X}))=1\).

  5. 5.

    We compute \(R^2=\frac{\sum _{i=1}^N (\hat{r}_i-\bar{r})}{\sum _{i=1}^N r_i - \bar{r}}\), were N is the number of test data samples, \(\hat{r}\) is the ratio predicted by the regression model, \(\bar{r}\) is the mean of the true ratios \(\{r_i\}_{i=1}^N\).

  6. 6.

    https://bit.ly/2N6teMA.

  7. 7.

    Layer names refer to the Keras implementation names.

  8. 8.

    Different seeds were used to initialize the dense connections to the last dense layer.

References

  1. Andrearczyk, V., Fageot, J., Oreiller, V., Montet, X., Depeursinge, A.: Exploring local rotation invariance in 3D CNNs with steerable filters. In: International Conference on Medical Imaging with Deep Learning (2019)

    Google Scholar 

  2. Andrearczyk, V., Graziani, M., Müller, H., Depeursinge, A.: Consistency of scale equivariance in internal representations of CNNs. In: Irish Machine Vision and Image Processing (2020)

    Google Scholar 

  3. Bejnordi, B.E., et al.: Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. J. Med. Imaging 4(4), 044504 (2017)

    Article  Google Scholar 

  4. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1872–1886 (2013)

    Article  Google Scholar 

  5. Cai, C.J., et al.: Human-centered tools for coping with imperfect algorithms during medical decision-making. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–14 (2019)

    Google Scholar 

  6. Depeursinge, A., Foncubierta-Rodriguez, A., Van De Ville, D., Müller, H.: Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med. Image Anal. 18(1), 176–196 (2014)

    Article  Google Scholar 

  7. Depeursinge, A.: Multi-scale and multi-directional biomedical texture analysis: finding the needle in the haystack. In: Biomedical Texture Analysis: Fundamentals. Applications and Tools, Elsevier-MICCAI Society Book Series, pp. 29–53. Elsevier (2017)

    Google Scholar 

  8. Elston, C.W., Ellis, I.O.: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5), 403–410 (1991)

    Article  Google Scholar 

  9. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  10. Ghosh, R., Gupta, A.K.: Scale steerable filters for locally scale-invariant convolutional neural networks. In: Workshop on Theoretical Physics for Deep Learning at the International Conference on Machine Learning (2019)

    Google Scholar 

  11. Graziani, M., Andrearczyk, V., Marchand-Maillet, S., Müller, H.: Concept attribution: explaining CNN decisions to physicians. Comput. Biol. Med. 123, 103865 (2020)

    Article  Google Scholar 

  12. Graziani, M., Andrearczyk, V., Müller, H.: Regression concept vectors for bidirectional explanations in histopathology. In: Stoyanov, D., et al. (eds.) MLCN/DLF/IMIMIC-2018. LNCS, vol. 11038, pp. 124–132. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02628-8_14

    Chapter  Google Scholar 

  13. Graziani, M., Andrearczyk, V., Müller, H.: Visualizing and interpreting feature reuse of pretrained CNNs for histopathology. In: Irish Machine Vision and Image Processing (IMVIP) (2019)

    Google Scholar 

  14. Graziani, M., Müller, H., Andrearczyk, V.: Interpreting intentionally flawed models with linear probes. In: SDL-CV Workshop at the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Hu, Z., Tang, J., Wang, Z., Zhang, K., Zhang, L., Sun, Q.: Deep learning for image-based cancer detection and diagnosis-a survey. Pattern Recogn. 83, 134–149 (2018)

    Article  Google Scholar 

  17. Huh, M., Agrawal, P., Efros, A.A.: What makes ImageNet good for transfer learning? In: Workshop on Large Scale Computer Vision Systems at NeurIPS 2016 (2016)

    Google Scholar 

  18. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inform. 7 (2016)

    Google Scholar 

  19. Kanazawa, A., Sharma, A., Jacobs, D.W.: Locally scale-invariant convolutional neural networks. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  20. Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: International Conference on Machine Learning, pp. 2673–2682 (2018)

    Google Scholar 

  21. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  22. Lompech, T., Graziani, M., Otálora, S., Depeursinge, A., Andrearczyk, V.: On the scale invariance in state of the art CNNs trained on ImageNet (2020, submitted)

    Google Scholar 

  23. Marcos, D., Kellenberger, B., Lobry, S., Tuia, D.: Scale equivariance in CNNs with vector fields. In: FAIM workshop at the International Conference on Machine Learning (2018)

    Google Scholar 

  24. Otálora, S., Atzori, M., Andrearczyk, V., Müller, H.: Image magnification regression using DenseNet for exploiting histopathology open access content. In: Stoyanov, D., et al. (eds.) OMIA/COMPAY-2018. LNCS, vol. 11039, pp. 148–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00949-6_18

    Chapter  Google Scholar 

  25. Raghu, M., Zhang, C., Kleinberg, J., Bengio, S.: Transfusion: understanding transfer learning with applications to medical imaging. arXiv preprint arXiv:1902.07208 (2019)

  26. Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  27. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  28. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2010). https://doi.org/10.1007/978-1-84882-935-0

    Book  MATH  Google Scholar 

  29. Touvron, H., Vedaldi, A., Douze, M., Jégou, H.: Fixing the train-test resolution discrepancy. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  30. Van Noord, N., Postma, E.: Learning scale-variant and scale-invariant features for deep image classification. Pattern Recogn. 61, 583–592 (2017)

    Article  Google Scholar 

  31. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNs for digital pathology. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 210–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_24

    Chapter  Google Scholar 

  32. Wan, T., Cao, J., Chen, J., Qin, Z.: Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features. Neurocomputing 229, 34–44 (2017)

    Article  Google Scholar 

  33. Worrall, D.E., Welling, M.: Deep scale-spaces: equivariance over scale. arXiv preprint arXiv:1905.11697 (2019)

  34. Yan, E., Huan, Y.: Do CNNs encode data augmentations? arxiv.org/2003.08773 (2020)

  35. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was partially possible thanks to the project PROCESS, part of the European Union’s Horizon 2020 research and innovation program (grant agreement No 777533). This work was also supported by the Swiss National Science Foundation (grant 205320_179069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Graziani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Graziani, M., Lompech, T., Müller, H., Depeursinge, A., Andrearczyk, V. (2020). Interpretable CNN Pruning for Preserving Scale-Covariant Features in Medical Imaging. In: Cardoso, J., et al. Interpretable and Annotation-Efficient Learning for Medical Image Computing. IMIMIC MIL3ID LABELS 2020 2020 2020. Lecture Notes in Computer Science(), vol 12446. Springer, Cham. https://doi.org/10.1007/978-3-030-61166-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61166-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61165-1

  • Online ISBN: 978-3-030-61166-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics