Skip to main content

Projective Latent Interventions for Understanding and Fine-Tuning Classifiers

  • Conference paper
  • First Online:
Interpretable and Annotation-Efficient Learning for Medical Image Computing (IMIMIC 2020, MIL3ID 2020, LABELS 2020)

Abstract

High-dimensional latent representations learned by neural network classifiers are notoriously hard to interpret. Especially in medical applications, model developers and domain experts desire a better understanding of how these latent representations relate to the resulting classification performance. We present Projective Latent Interventions (PLIs), a technique for retraining classifiers by back-propagating manual changes made to low-dimensional embeddings of the latent space. The back-propagation is based on parametric approximations of \(t\)-distributed stochastic neighbourhood embeddings. PLIs allow domain experts to control the latent decision space in an intuitive way in order to better match their expectations. For instance, the performance for specific pairs of classes can be enhanced by manually separating the class clusters in the embedding. We evaluate our technique on a real-world scenario in fetal ultrasound imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The class cluster for class \(\gamma _j\) is simply the set of points \(\{y_i = E(C_l(x_i)) \mid g_i = \gamma _j\}\).

References

  1. Baumgartner, C.F., et al.: SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans. Med. Imaging 36(11), 2204–2215 (2017). https://doi.org/10.1109/TMI.2017.2712367

    Article  Google Scholar 

  2. Bellet, A., Habrard, A., Sebban, M.: A survey on metric learning for feature vectors and structured data. arXiv preprint arXiv:1306.6709 (2013)

  3. Brent, R.P.: Algorithms for minimization without derivatives. Courier Corporation (2013)

    Google Scholar 

  4. Chen, X., Weng, J., Lu, W., Xu, J., Weng, J.: Deep manifold learning combined with convolutional neural networks for action recognition. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 3938–3952 (2017). https://doi.org/10.1109/TNNLS.2017.2740318

    Article  Google Scholar 

  5. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for generic similarity measures. In: Proceedings of the 20th International Conference on World Wide Web, pp. 577–586 (2011). https://www.cs.princeton.edu/cass/papers/www11.pdf

  6. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010). http://jmlr.org/papers/volume11/erhan10a/erhan10a.pdf

  7. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 (Canadian Institute for Advanced Research). http://www.cs.toronto.edu/~kriz/cifar.html. Accessed 16 Mar 2020

  8. Kulis, B., et al.: Metric learning: a survey. Found. Trends Mach. Learn. 5(4), 287–364 (2012)

    Article  MathSciNet  Google Scholar 

  9. LeCun, Y., Cortes, C.: The MNIST database of handwritten digits (2005). http://yann.lecun.com/exdb/mnist/. Accessed 16 Mar 2020

  10. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Artificial intelligence and statistics, pp. 562–570 (2015). https://www.proceedings.mlr.press/v38/lee15a.pdf

  11. van der Maaten, L.: Learning a parametric embedding by preserving local structure. In: Artificial Intelligence and Statistics, pp. 384–391 (2009). http://proceedings.mlr.press/v5/maaten09a.html

  12. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008). https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf

  13. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction, December 2018. arXiv:1802.03426

  14. Mead, A.: Review of the development of multidimensional scaling methods. J. Roy. Stat. Soc. Ser. D (Stat.) 41(1), 27–39 (1992). https://doi.org/10.2307/2348634

  15. Min, M.R., van der Maaten, L., Yuan, Z., Bonner, A.J., Zhang, Z.: Deep supervised t-distributed embedding. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010) (2010). https://www.cs.toronto.edu/~cuty/DSTEM.pdf

  16. NHS: Fetal Anomaly Screening Programme: Programme Handbook June 2015. Public Health England (2015)

    Google Scholar 

  17. Poličar, P.G., Stražar, M., Zupan, B.: openTSNE: a modular Python library for t-SNE dimensionality reduction and embedding. bioRxiv, August 2019. https://doi.org/10.1101/731877. http://biorxiv.org/lookup/doi/10.1101/731877

  18. Rauber, P.E., Fadel, S.G., Falcão, A.X., Telea, A.C.: Visualizing the hidden activity of artificial neural networks. IEEE Trans. Visual Comput. Graphics 23(1), 101–110 (2017)

    Article  Google Scholar 

  19. Rusu, A.A., et al.: Meta-learning with latent embedding optimization (2018). arXiv:1807.05960

  20. Tenenbaum, J.B.: Science, pp. 2319–2323. (2000). https://doi.org/10.1126/science.290.5500.2319. http://www.sciencemag.org/cgi/doi/10.1126/science.290.5500.2319

  21. Tomar, V.S., Rose, R.C.: Manifold regularized deep neural networks. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)

    Google Scholar 

  22. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1–3), 37–52 (1987). https://doi.org/10.1016/0169-7439(87)80084-9

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the State of Upper Austria (Human-Interpretable Machine Learning) and the Austrian Federal Ministry of Education, Science and Research via the Linz Institute of Technology (LIT-2019-7-SEE-117), and by the Wellcome Trust (IEH 102431 and EPSRC EP/S013687/1.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hinterreiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hinterreiter, A., Streit, M., Kainz, B. (2020). Projective Latent Interventions for Understanding and Fine-Tuning Classifiers. In: Cardoso, J., et al. Interpretable and Annotation-Efficient Learning for Medical Image Computing. IMIMIC MIL3ID LABELS 2020 2020 2020. Lecture Notes in Computer Science(), vol 12446. Springer, Cham. https://doi.org/10.1007/978-3-030-61166-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61166-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61165-1

  • Online ISBN: 978-3-030-61166-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics