Skip to main content

SharedNet: A Novel Efficient Convolutional Architecture Based on Group Sharing Convolution

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12463))

Included in the following conference series:

Abstract

We propose a novel efficient deep convolutional neural networks model for low-computational equipment, referred to as SharedNet. And on ImageNet, Our SharedNet has achieved the best accuracy and efficiency in similar convolutional neural networks. It is due to a new efficient convolution called group sharing convolution which applies parameter sharing to reduce computational cost. Referring to other efficient network design methods, we design our network units which called SharedNet unit by combining group convolution with group shared convolution. The experimental results show that the accuracy and efficiency of this unit are superior to the depthwise separable convolution. Interestingly, SharedNet also shows flexibility according to application requirements that the number of groups of a unit could be adjusted to balance accuracy and efficiency. Besides, for both neural architecture search and manually-designed CNNs, a model unit plays an import role and, therefore, we stack SharedNet units to build models referring to ResNet164 to test accuracy and efficiency of SharedNet units on CIFAR10 and CIFAR100.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  3. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, vol. 07, pp. 1–9, 12 June 2015

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: ICLR, CVPR, vol. 2016, pp. 770–778, December 2016

    Google Scholar 

  5. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, vol. 2017, pp. 2261–2269, January 2017

    Google Scholar 

  6. Li, H., Samet, H., Kadav, A., Durdanovic, I., Graf, H.P.: Pruning filters for efficient convnets. In: ICLR. ICLR (2017)

    Google Scholar 

  7. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.-S.: Learning efficient convolutional networks through network slimming. In ICCV, pp. 2755–2763. IEEE Computer Society (2017)

    Google Scholar 

  8. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for deep convolutional neural networks acceleration. In: CVPR, pp. 4340–4349. Computer Vision Foundation. IEEE (2019)

    Google Scholar 

  9. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: training deep neural networks with binary weights during propagations. In: NIPS, vol. 2015, pp. 3123–3131. Neural Information Processing Systems Foundation (2015)

    Google Scholar 

  10. Chen, S., Zhao, Q.: Shallowing deep networks: layer-wise pruning based on feature representations. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 3048–3056 (2018)

    Google Scholar 

  11. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017)

    Google Scholar 

  12. Zhang, X., Zhou, X.Y., Lin, M.X., Sun, R.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: CVPR, pp. 6848–6856. IEEE, New York (2018)

    Google Scholar 

  13. Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In: CVPR, pp. 2820–2828. Computer Vision Foundation (2018)

    Google Scholar 

  14. Cai, H., Zhu, L., Han, S.: Proxylessnas: direct neural architecture search on target task and hardware. In: ICLR (2019)

    Google Scholar 

  15. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520 (2018)

    Google Scholar 

  16. Howard, A., et al.: Searching for MobileNetV3. CoRR, abs/1905.0 (2019)

    Google Scholar 

  17. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  18. Zhang, T., Qi,G.J., Xiao, B., Wang, J.: Interleaved group convolutions. In: CVPR, vol. 2017, pp. 4383–4392. Institute of Electrical and Electronics Engineers Inc., December 2017

    Google Scholar 

  19. Xie, G., Wang, J., Zhang, T., Lai, J., Hong, R., Qi, G.J.: Interleaved structured sparse convolutional neural networks. In: CVPR, pp. 8847–8856. IEEE Computer Society, December 2018

    Google Scholar 

  20. Sun, K., Li, M., Liu, D., Wang, J.: IGCv3: interleaved low-rank group convolutions for efficient deep neural networks. In BMVC. BMVA Press (2019)

    Google Scholar 

  21. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: ICLR (2019)

    Google Scholar 

  22. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, vol. 2017, pp. 5987–5995, January 2017

    Google Scholar 

  23. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) ICML, Volume 97 of Proceedings of Machine Learning Research, PMLR, pp. 6105–6114 (2019)

    Google Scholar 

  24. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR (2017)

    Google Scholar 

  25. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: ICLR. OpenReview.net (2019)

    Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was sponsored by Natural Science Foundation of Chongqing (Grant No. cstc2018jcyjAX0532).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Xun Mi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mi, JX., Feng, J. (2020). SharedNet: A Novel Efficient Convolutional Architecture Based on Group Sharing Convolution. In: Huang, DS., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12463. Springer, Cham. https://doi.org/10.1007/978-3-030-60799-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60799-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60798-2

  • Online ISBN: 978-3-030-60799-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics