Skip to main content

Monitoring Spatio-Temporal Properties (Invited Tutorial)

  • Conference paper
  • First Online:
Runtime Verification (RV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12399))

Included in the following conference series:

Abstract

From the formation of traffic jams to the development of troublesome, whirlpool-like spirals in the heart’s electrical activity, spatio-temporal patterns are key in understanding how complex behaviors can emerge in a network of locally interacting dynamical systems. One of the most important and intriguing questions is how to specify spatio-temporal behaviors in a formal and human-understandable specification language and how to monitor their onset efficiently. In this tutorial, we present the spatio-temporal logic STREL and its expressivity to specify and monitor spatio-temporal behaviors over complex dynamical and spatially distributed systems. We demonstrate our formalism’s applicability to different scenarios considering static or dynamic spatial configurations and systems with deterministic or stochastic dynamics.

This research has been partially supported by the Austrian FWF projects ZK-35 and W1255-N23, by the Italian PRIN project “SEDUCE” n. 2017TWRCNB and by the Italian PRIN project “IT-MaTTerS” n, 2017FTXR7S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We restrict here only to the tropical semiring, a more general definition can be found in  [13].

References

  1. Abbas, H., Fainekos, G.E., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Probabilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed. Comput. Syst. 12(s2), 95:1–95:30 (2013). https://doi.org/10.1145/2465787.2465797

    Article  Google Scholar 

  2. Abelson, H., et al.: Amorphous computing. Commun. ACM 43(5), 74–82 (2000). https://doi.org/10.1145/332833.332842

    Article  MathSciNet  Google Scholar 

  3. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics. Springer, Heidelberg (2007). https://doi.org/10.1007/978-1-4020-5587-4

    Book  MATH  Google Scholar 

  4. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002). https://doi.org/10.1109/MCOM.2002.1024422

    Article  Google Scholar 

  5. Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality. J. ACM 43, 116–146 (1996)

    Article  MathSciNet  Google Scholar 

  6. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206 (2002). https://doi.org/10.1145/506147.506151

    Article  MathSciNet  MATH  Google Scholar 

  7. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991). https://doi.org/10.1145/116873.116880

    Article  Google Scholar 

  8. Bae, K., Meseguer, J.: A rewriting-based model checker for the linear temporal logic of rewriting. Electron. Notes Theoret. Comput. Sci. 290, 19–36 (2012). https://doi.org/10.1016/j.entcs.2012.11.009

    Article  MATH  Google Scholar 

  9. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic models using robustness of temporal properties. Theoret. Comp. Sci. 587, 3–25 (2015). https://doi.org/10.1016/j.tcs.2015.02.046

    Article  MathSciNet  MATH  Google Scholar 

  10. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_5

    Chapter  Google Scholar 

  11. Bartocci, E., Fenton, F.H.: Teaching cardiac electrophysiology modeling to undergraduate students: laboratory exercises and GPU programming for the study of arrhythmias and spiral wave dynamics. Adv. Physiol. Educ. 35(4), 427–437 (2011). https://doi.org/10.1152/advan.00034.2011

    Article  Google Scholar 

  12. Bartocci, E., Bloem, R., Nickovic, D., Roeck, F.: A counting semantics for monitoring LTL specifications over finite traces. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 547–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_29

    Chapter  Google Scholar 

  13. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spatially distributed cyber-physical systems. In: Proceedings of MEMOCODE 2017: The 15th ACM-IEEE International Conference on Formal Methods and Models for System Design, pp. 146–155. ACM (2017). https://doi.org/10.1145/3127041.3127050

  14. Bartocci, E., Bortolussi, L., Milios, D., Nenzi, L., Sanguinetti, G.: Studying emergent behaviours in morphogenesis using signal spatio-temporal logic. In: Abate, A., Šafránek, D. (eds.) HSB 2015. LNCS, vol. 9271, pp. 156–172. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26916-0_9

    Chapter  Google Scholar 

  15. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_1

    Chapter  Google Scholar 

  16. Bartocci, E., Ferrère, T., Manjunath, N., Nickovic, D.: Localizing faults in simulink/stateflow models with STL. In: Proceedings of HSCC 2018: The 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week), pp. 197–206. ACM (2018). https://doi.org/10.1145/3178126

  17. Bartocci, E., Manjunath, N., Mariani, L., Mateis, C., Ničković, D.: Automatic failure explanation in CPS models. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNCS, vol. 11724, pp. 69–86. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30446-1_4

    Chapter  Google Scholar 

  18. Bartocci, E., Manjunath, N., Mariani, L., Mateis, C., Nickovic, D., Pastore, F.: CPSDebug: a tool for explanation of failures in cyber-physical systems. In: Proceedings of ISSTA 2020: 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event, USA, 18–22 July 2020, pp. 569–572. ACM (2020). https://doi.org/10.1145/3395363

  19. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002). https://doi.org/10.1109/34.993558

    Article  Google Scholar 

  20. Bennett, B., Cohn, A.G., Wolter, F., Zakharyaschev, M.: Multi-dimensional modal logic as a framework for spatio-temporal reasoning. Appl. Intell. 17(3), 239–251 (2002). https://doi.org/10.1023/A:1020083231504

    Article  MATH  Google Scholar 

  21. Bhattacharyya, A.: Morphogenesis as an amorphous computation. In: Proceedings of the Third Conference on Computing Frontiers, 2006, Ischia, Italy, 3–5 May 2006, pp. 53–64. ACM (2006). https://doi.org/10.1145/1128022.1128032

  22. Bortolussi, L., Galpin, V., Hillston, J.: Hybrid performance modelling of opportunistic networks. In: Proceedings of QAPL 2012: The 10th Workshop on Quantitative Aspects of Programming Languages and Systems, pp. 106–121 (2012). https://doi.org/10.4204/EPTCS.85.8

  23. Bortolussi, L., Milios, D., Sanguinetti, G.: U-check: model checking and parameter synthesis under uncertainty. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015. LNCS, vol. 9259, pp. 89–104. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22264-6_6

    Chapter  Google Scholar 

  24. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain continuous-time markov chains. Inf. Comput. 247, 235–253 (2016)

    Article  MathSciNet  Google Scholar 

  25. Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear temporal properties of stochastic models. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 396–413. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_23

    Chapter  MATH  Google Scholar 

  26. Bresolin, D., Sala, P., Monica, D.D., Montanari, A., Sciavicco, G.: A decidable spatial generalization of metric interval temporal logic. In: 2010 17th International Symposium on Temporal Representation and Reasoning, pp. 95–102 (2010). https://doi.org/10.1109/TIME.2010.22

  27. Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Inf. Comput. 186(2), 194–235 (2003). https://doi.org/10.1016/S0890-5401(03)00137-8

    Article  MATH  Google Scholar 

  28. Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients. In: Proceedings of POPL 2000: the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 365–377. ACM, New York (2000). https://doi.org/10.1145/325694.325742

  29. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 222–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44602-7_18

    Chapter  Google Scholar 

  30. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-temporal model-checking of vehicular movement in public transport systems (2015, Submitted)

    Google Scholar 

  31. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Spatial logic and spatial model checking for closure spaces. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 156–201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34096-8_6

    Chapter  MATH  Google Scholar 

  32. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of CVPR 2005: The IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893, June 2005

    Google Scholar 

  33. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_27

    Chapter  Google Scholar 

  34. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9

    Chapter  MATH  Google Scholar 

  35. Donzé, A., Clermont, G., Legay, A., Langmead, C.J.: Parameter synthesis in nonlinear dynamical systems: application to systems biology. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 155–169. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02008-7_11

    Chapter  Google Scholar 

  36. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_19

    Chapter  Google Scholar 

  37. Donzé, A., Krogh, B., Rajhans, A.: Parameter synthesis for hybrid systems with an application to simulink models. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 165–179. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00602-9_12

    Chapter  MATH  Google Scholar 

  38. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branching versus linear time. In: Wright, J.R., Landweber, L., Demers, A.J., Teitelbaum, T. (eds.) Proceedings of POPL 83: The Tenth Annual ACM Symposium on Principles of Programming Languages, pp. 127–140. ACM Press (1983). https://doi.org/10.1145/567067.567081

  39. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009). https://doi.org/10.1016/j.tcs.2009.06.021

    Article  MathSciNet  MATH  Google Scholar 

  40. Feng, C., Hillston, J., Reijsbergen, D.: Moment-based probabilistic prediction of bike availability for bike-sharing systems. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 139–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4_9

    Chapter  Google Scholar 

  41. Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite keys. Acta Informatica 4, 1–9 (1974). https://doi.org/10.1007/BF00288933

    Article  MATH  Google Scholar 

  42. Fishman, E.: Bikeshare: a review of recent literature. Transp. Rev. 36(1), 92–113 (2016). https://doi.org/10.1080/01441647.2015.1033036

    Article  Google Scholar 

  43. Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48384-5_17

    Chapter  Google Scholar 

  44. Gol, E.A., Bartocci, E., Belta, C.: A formal methods approach to pattern synthesis in reaction diffusion systems. In: Proceedings of CDC 2014: The 53rd IEEE Conference on Decision and Control, pp. 108–113. IEEE (2014). https://doi.org/10.1109/CDC.2014.7039367

  45. Golden, J.W., Yoon, H.S.: Heterocyst formation in anabaena. Curr. Opin. Microbiol. 1(6), 623–629 (1998). https://doi.org/10.1016/S1369-5274(98)80106-9

    Article  Google Scholar 

  46. Grosu, R., et al.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_31

    Chapter  Google Scholar 

  47. Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.: Learning and detecting emergent behavior in networks of cardiac myocytes. Commun. ACM 52(3), 97–105 (2009). https://doi.org/10.1145/1467247.1467271

    Article  MATH  Google Scholar 

  48. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: SpaTeL: a novel spatial-temporal logic and its applications to networked systems. In: Proceedings of HSCC 2015: The 18th International Conference on Hybrid Systems: Computation and Control, pp. 189–198. IEEE (2015). https://doi.org/10.1145/2728606.2728633

  49. Jaksic, S., Bartocci, E., Grosu, R., Nguyen, T., Nickovic, D.: Quantitative monitoring of STL with edit distance. Formal Methods Syst. Des. 53(1), 83–112 (2018). https://doi.org/10.1007/s10703-018-0319-x

    Article  MATH  Google Scholar 

  50. Jaksic, S., Bartocci, E., Grosu, R., Nickovic, D.: An algebraic framework for runtime verification. IEEE Trans. CAD Integr. Circuits Syst. 37(11), 2233–2243 (2018). https://doi.org/10.1109/TCAD.2018.2858460

    Article  Google Scholar 

  51. Julesz, B.: Textons, the elements of texture perception, and their interactions. Nature 290, 91–97 (1981)

    Article  Google Scholar 

  52. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

    Article  Google Scholar 

  53. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems, A Cyber-Physical Systems Approach, 2nd edn. MIT Press, Berlin (2017)

    MATH  Google Scholar 

  54. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems with CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 83–119. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34096-8_4

    Chapter  Google Scholar 

  55. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  56. Ma, M., Bartocci, E., Lifland, E., Stankovic, J.A., Feng, L.: SaSTL: spatial aggregation signal temporal logic for runtime monitoring in smart cities. In: Proceedings of ICCPS 2020: The 11th ACM/IEEE International Conference on Cyber-Physical Systems, pp. 51–62. IEEE (2020). https://doi.org/10.1109/ICCPS48487.2020.00013

  57. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  MATH  Google Scholar 

  58. Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits. STTT 15(3), 247–268 (2013)

    Article  Google Scholar 

  59. Marx, M., Reynolds, M.: Undecidability of compass logic. J. Logic Comput. 9(6), 897–914 (1999). https://doi.org/10.1093/logcom/9.6.897

    Article  MathSciNet  MATH  Google Scholar 

  60. Murthy, A., et al.: Curvature analysis of cardiac excitation wavefronts. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(2), 323–336 (2013). https://doi.org/10.1109/TCBB.2012.125

    Article  Google Scholar 

  61. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3_2

    Chapter  Google Scholar 

  62. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties with SSTL. Log. Methods Comput. Sci. 14(4) (2018). https://doi.org/10.23638/LMCS-14(4:2)2018

  63. Olver, P.J.: Finite differences. Introduction to Partial Differential Equations. UTM, pp. 181–214. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02099-0_5

    Chapter  Google Scholar 

  64. Ratasich, D., Khalid, F., Geissler, F., Grosu, R., Shafique, M., Bartocci, E.: A roadmap toward the resilient Internet of Things for cyber-physical systems. IEEE Access 7, 13260–13283 (2019). https://doi.org/10.1109/ACCESS.2019.2891969

    Article  Google Scholar 

  65. Rodionova, A., Bartocci, E., Ničković, D., Grosu, R.: Temporal logic as filtering. In: Proceedings of HSCC 2016, pp. 11–20. ACM (2016). https://doi.org/10.1145/2883817.2883839

  66. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  67. Sankaranarayanan, S., Kumar, S.A., Cameron, F., Bequette, B.W., Fainekos, G., Maahs, D.M.: Model-based falsification of an artificial pancreas control system. SIGBED Rev. 14(2), 24–33 (2017). https://doi.org/10.1145/3076125.3076128

    Article  Google Scholar 

  68. Silvetti, S., Policriti, A., Bortolussi, L.: An active learning approach to the falsification of black box cyber-physical systems. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_1

    Chapter  Google Scholar 

  69. Talcott, C.: Cyber-physical systems and events. In: Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and New Computing Paradigms. LNCS, vol. 5380, pp. 101–115. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89437-7_6

    Chapter  Google Scholar 

  70. Tan, Y., Vuran, M.C., Goddard, S.: Spatio-temporal event model for cyber-physical systems. In: 2009 29th IEEE International Conference on Distributed Computing Systems Workshops, pp. 44–50. IEEE (2009). https://doi.org/10.1109/ICDCSW.2009.82

  71. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. So. London B: Biol. Sci. 237, 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  72. Weiss, R.: Synthetic biology: from modules to systems. In: Proceedings of the 20th ACM Great Lakes Symposium on VLSI 2009, Providence, Rhode Island, USA, 16–18 May 2010, pp. 171–172. ACM (2010). https://doi.org/10.1145/1785481

  73. Yaghoubi, S., Fainekos, G.: Hybrid approximate gradient and stochastic descent for falsification of nonlinear systems. In: Proceedings of ACC 2017: The 2017 American Control Conference, pp. 529–534. IEEE (2017). https://doi.org/10.23919/ACC.2017.7963007

  74. Younes, H.L.S., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical probabilistic model checking: an empirical study. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 46–60. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_4

    Chapter  Google Scholar 

  75. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006). https://doi.org/10.1016/j.ic.2006.05.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Nenzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nenzi, L., Bartocci, E., Bortolussi, L., Loreti, M., Visconti, E. (2020). Monitoring Spatio-Temporal Properties (Invited Tutorial). In: Deshmukh, J., Ničković, D. (eds) Runtime Verification. RV 2020. Lecture Notes in Computer Science(), vol 12399. Springer, Cham. https://doi.org/10.1007/978-3-030-60508-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60508-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60507-0

  • Online ISBN: 978-3-030-60508-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics