Skip to main content

Improving Pathological Distribution Measurements with Bayesian Uncertainty

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis (UNSURE 2020, GRAIL 2020)

Abstract

Deep learning assisted histopathology has the potential to extract reproducible and accurate measurements from digitised slides in a scalable fashion. A typical workflow of such analysis may involve instance segmentation of relevant tissues followed by feature measurements. Inherent segmentation uncertainties produced by these deep models, however, could propagate to the downstream measurements, causing biased distribution estimate of the whole slide. One challenging aspect when handling ambiguous tissues is that the number of instances could differ as the instance segmentation step may not generalise well to these tissues. As an attempt to address this problem, we propose to derive a confidence score from the segmentation uncertainties obtained from Bayesian Neural Networks (BNNs) and utilise these as weights to improve the distribution estimate. We generate a synthetic dataset that mimics the diverse and varying visual features of the original data to enable systematic experiments. With this dataset we demonstrate the robustness of the method by extracting several clinically relevant measurements with two different BNNs. Our results indicate that the distribution estimates are consistently improved when the instances are weighted by the entropy-derived confidence measure. In addition, we provide results on applying the method to the original data.

KHT is funded by the EPSRC and MRC grant number EP/L016052/1. JR and KS are supported by the Oxford NIHR Biomedical Research Centre and the PathLAKE consortium (Innovate UK App. Nr. 18181).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural networks. arXiv preprint arXiv:1505.05424 (2015)

  2. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient ND image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006). https://doi.org/10.1007/s11263-006-7934-5

    Article  Google Scholar 

  3. Chatrian, A., Sirinukunwattana, K., Verrill, C., Rittscher, J.: Towards the identification of histology based subtypes in prostate cancer. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 948–952. IEEE (2019)

    Google Scholar 

  4. DeVries, T., Taylor, G.W.: Leveraging uncertainty estimates for predicting segmentation quality. arXiv preprint arXiv:1807.00502 (2018)

  5. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  6. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1125–1134 (2017)

    Google Scholar 

  7. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680 (2015)

  8. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5574–5584 (2017)

    Google Scholar 

  9. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  10. Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local reparameterization trick. In: Advances in Neural Information Processing Systems, pp. 2575–2583 (2015)

    Google Scholar 

  11. Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems, pp. 6965–6975 (2018)

    Google Scholar 

  12. Kwon, Y., Won, J.H., Kim, B.J., Paik, M.C.: Uncertainty quantification using Bayesian neural networks in classification: application to biomedical image segmentation. Comput. Stat. Data Anal. 142, 106816 (2020)

    Article  MathSciNet  Google Scholar 

  13. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, pp. 6402–6413 (2017)

    Google Scholar 

  14. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: International Conference on Machine Learning, pp. 1558–1566 (2016)

    Google Scholar 

  15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  16. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML, vol. 30, no. 1, p. 3 (2013)

    Google Scholar 

  17. Miller, D., Dayoub, F., Milford, M., Sünderhauf, N.: Evaluating merging strategies for sampling-based uncertainty techniques in object detection. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 2348–2354. IEEE (2019)

    Google Scholar 

  18. Miller, D., Nicholson, L., Dayoub, F., Sünderhauf, N.: Dropout sampling for robust object detection in open-set conditions. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7. IEEE (2018)

    Google Scholar 

  19. Morrison, D., Milan, A., Antonakos, E.: Uncertainty-aware instance segmentation using dropout sampling. Technical report, CVPR Robotic Vision Probabilistic Object Detection Challenge (2019)

    Google Scholar 

  20. Mukhoti, J., Gal, Y.: Evaluating Bayesian deep learning methods for semantic segmentation. arXiv preprint arXiv:1811.12709 (2018)

  21. Ng, M., Guo, F., Biswas, L., Wright, G.A.: Estimating uncertainty in neuralnetworks for segmentation quality control. Technical report (2018). https://www.doc.ic.ac.uk/~bglocker/public/mednips2018/med-nips_2018_paper_105.pdf

  22. Nketia, T.A., Noble, J.A., Rittscher, J.: Towards quantifying the impact of cell boundary estimation on morphometric analysis for phenotypic screening. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 781–784. IEEE (2015)

    Google Scholar 

  23. Orlando, J.I., et al.: U2-Net: a Bayesian U-Net model with epistemic uncertainty feedback for photoreceptor layer segmentation in pathological oct scans. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1441–1445. IEEE (2019)

    Google Scholar 

  24. Ramdas, A., Trillos, N.G., Cuturi, M.: On wasserstein two-sample testing and related families of nonparametric tests. Entropy 19(2), 47 (2017)

    Article  MathSciNet  Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Shridhar, K., Laumann, F., Liwicki, M.: A comprehensive guide to Bayesian convolutional neural network with variational inference. arXiv preprint arXiv:1901.02731 (2019)

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  28. Weissenbacher, A.: Normothermic kidney preservation. Ph.D. thesis, University of Oxford (2018)

    Google Scholar 

  29. Weissenbacher, A., Lo Faro, L., Boubriak, O., Soares, M.F., Roberts, I.S., Hunter, J.P., Voyce, D., Mikov, N., Cook, A., Ploeg, R.J., et al.: Twenty-four-hour normothermic perfusion of discarded human kidneys with urine recirculation. Am. J. Transplant. 19(1), 178–192 (2019)

    Article  Google Scholar 

  30. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  31. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Advances in neural information processing systems, pp. 465–476 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka Ho Tam .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 537 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tam, K.H., Sirinukunwattana, K., Soares, M.F., Kaisar, M., Ploeg, R., Rittscher, J. (2020). Improving Pathological Distribution Measurements with Bayesian Uncertainty. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis. UNSURE GRAIL 2020 2020. Lecture Notes in Computer Science(), vol 12443. Springer, Cham. https://doi.org/10.1007/978-3-030-60365-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60365-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60364-9

  • Online ISBN: 978-3-030-60365-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics