Skip to main content

Reviewing and Predicting Human-Machine Cooperation Based on Knowledge Graph Analysis

  • Conference paper
  • First Online:
HCI International 2020 - Late Breaking Papers: User Experience Design and Case Studies (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12423))

Included in the following conference series:

  • 1787 Accesses

Abstract

Human-Machine Cooperation involves multiple fields and disciplines such as automated vehicles, robots, machine manufacturing, psychological cognition, and artificial intelligence. As research in these areas progresses rapidly, it is important to keep up with new trends and key turning points in the development of collective knowledge. Based on the visualization method, we can quickly sort out the ins and outs of this field in the vast literature and search for valuable and potential literature. First, we introduced the principles of scientific visualization of knowledge graphs. Then we extracted 3257 articles from Web of Science Core Collection and established a research field of bibliographic records of representative data sets. Next, we carried out a visual analysis of the discipline Dual-Map overlay, Co-words, Co-citation, and reviewed some key Highly-Cited documents. Finally, we summarize and analyze the literature with high betweenness centrality, citation bursts, and Sigma value. This review will help professionals to have a more systematic understanding of the entire field and find opportunities for future Human-Machine Cooperation development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://cluster.ischool.drexel.edu/~cchen/citespace/download/.

References

  1. Hoc, J.-M.: From human–machine interaction to human–machine cooperation. Ergonomics 43(7), 833–843 (2000)

    Article  Google Scholar 

  2. Naujoks, F., Forster, Y., Wiedemann, K., Neukum, A.: A human-machine interface for cooperative highly automated driving. In: Stanton, N., Landry, S., Di Bucchianico, G., Vallicelli, A. (eds.) Advances in Human Aspects of Transportation. AISC, vol. 484, pp. 585–595. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-41682-3_49

    Chapter  Google Scholar 

  3. Biondi, F., Alvarez, I., Jeong, K.-A.: Human-vehicle cooperation in automated driving: a multidisciplinary review and appraisal. Int. J. Hum.-Comput. Interact. 35(11), 932–946 (2019)

    Article  Google Scholar 

  4. Kuhn, T.S.: The Structure of Scientific Revolutions. University of Chicago Press (1962)

    Google Scholar 

  5. Burt, R.S.: Structural holes and good ideas. Am. J. Sociol. 110(2), 349–399 (2004)

    Article  Google Scholar 

  6. Chen, C.: The centrality of pivotal points in the evolution of scientific networks. In: Amant, R.S., Riedl, J., Jameson, A. (eds.) IUI 2005, pp. 98–105. ACM (2005)

    Google Scholar 

  7. Kleinberg, J.: Bursty and hierarchical structure in streams. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press (2002)

    Google Scholar 

  8. Chaomei, C.: Science mapping: a systematic review of the literature. J. Data Inf. Sci. 2, 1–40 (2017)

    Article  Google Scholar 

  9. Chen, C.: Predictive effects of structural variation on citation counts. J. Am. Soc. Inf. Sci. Technol. 63(3), 431–449 (2012)

    Article  Google Scholar 

  10. Navarro, J., Mars, F., Young, M.S.: Lateral control assistance in car driving: classification, review and future prospects. IET Intell. Transp. Syst. 5(3), 207–220 (2011)

    Article  Google Scholar 

  11. Flemisch, F.O., et al.: Towards cooperative guidance and control of highly automated vehicles: H-Mode and Conduct-by-Wire. Ergonomics 57(3), 343–360 (2014)

    Article  Google Scholar 

  12. Flemisch, F., et al.: Shared control is the sharp end of cooperation: Towards a common framework of joint action, shared control and human machine cooperation. IFAC-PapersOnLine 49(19), 72–77 (2016)

    Article  Google Scholar 

  13. Abbink, D.A., Mulder, M., Boer, E.R.: Haptic shared control: smoothly shifting control authority? Cogn. Technol. Work 14(1), 19–28 (2012)

    Article  Google Scholar 

  14. Mulder, M., Abbink, D.A., Boer, E.R.: Sharing control with haptics: seamless driver support from manual to automatic control. Hum. Factors 54(5), 786–798 (2012)

    Article  Google Scholar 

  15. Flemisch, F., et al.: Towards a dynamic balance between humans and automation: authority, ability, responsibility and control in shared and cooperative control situations. Cogn. Technol. Work 14(1), 3–18 (2012)

    Article  MathSciNet  Google Scholar 

  16. Merat, N., et al.: Transition to manual: driver behaviour when resuming control from a highly automated vehicle. Transp. Res. Part F: Traffic Psychol. Behav. 27, 274–282 (2014)

    Article  Google Scholar 

  17. Itoh, M., Inagaki, T.: Design and evaluation of steering protection for avoiding collisions during a lane change. Ergonomics 57(3), 361–373 (2014)

    Article  Google Scholar 

  18. Mars, F., Deroo, M., Hoc, J.: Analysis of human-machine cooperation when driving with different degrees of haptic shared control. IEEE Trans. Haptics 7(3), 324–333 (2014)

    Article  Google Scholar 

  19. Blanco, M., et al.: Automated vehicles: take-over request and system prompt evaluation. In: Meyer, G., Beiker, S. (eds.) Road Vehicle Automation 3. LNM, pp. 111–119. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40503-2_9

    Chapter  Google Scholar 

  20. Navarro, J.: Human–machine interaction theories and lane departure warnings. Theor. Issues Ergon. Sci. 18(6), 519–547 (2017)

    Article  Google Scholar 

  21. Michalos, G., et al.: Design considerations for safe human-robot collaborative workplaces. Procedia CIRP 37, 248–253 (2015)

    Article  Google Scholar 

  22. Zanchettin, A.M., et al.: Safety in human-robot collaborative manufacturing environments: metrics and control. IEEE Trans. Autom. Sci. Eng. 13(2), 882–893 (2016)

    Article  Google Scholar 

  23. Woolley, A.W., et al.: Evidence for a collective intelligence factor in the performance of human groups. Science 330(6004), 686–688 (2010)

    Article  Google Scholar 

  24. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  Google Scholar 

  25. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. J. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  27. Quinn, A.J., Bederson, B.B.: Human computation: a survey and taxonomy of a growing field. In: 29th Annual Chi Conference on Human Factors in Computing Systems, pp. 1403–1412 (2011)

    Google Scholar 

  28. Zou, H., et al.: Robust WiFi-enabled device-free gesture recognition via unsupervised adversarial domain adaptation, pp. 1–8 (2018)

    Google Scholar 

  29. Albini, A., Denei, S., Cannata, G.: Human hand recognition from robotic skin measurements in human-robot physical interactions, pp. 4348–4353 (2017)

    Google Scholar 

  30. Wang, P., et al.: Deep learning-based human motion recognition for predictive context-aware human-robot collaboration. CIRP Ann. 67(1), 17–20 (2018)

    Article  Google Scholar 

  31. Zhong, Y., Deng, W.: Deep difference analysis in similar-looking face recognition, pp. 3353–3358 (2018)

    Google Scholar 

  32. Wang, F.: The emergence of intelligent enterprises: from CPS to CPSS. IEEE Intell. Syst. 25(4), 85–88 (2010)

    Article  Google Scholar 

  33. Hoc, J.-M.: Towards a cognitive approach to human–machine cooperation in dynamic situations. Int. J. Hum.-Comput. Stud. 54(4), 509–540 (2001)

    Article  Google Scholar 

  34. Pacaux, M.P., et al.: Levels of automation and human-machine cooperation: application to human-robot interaction. IFAC Proc. Volumes 44(1), 6484–6492 (2011)

    Article  Google Scholar 

  35. Krüger, J., Lien, T.K., Verl, A.: Cooperation of human and machines in assembly lines. CIRP Ann. 58(2), 628–646 (2009)

    Article  Google Scholar 

  36. Panchanathan, K., Boyd, R.: Indirect reciprocity can stabilize cooperation without the second-order free rider problem. Nature 432(7016), 499–502 (2004)

    Article  Google Scholar 

  37. Fehr, E., Gächter, S.: Altruistic punishment in humans. Nature 415(6868), 137–140 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujia Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y. (2020). Reviewing and Predicting Human-Machine Cooperation Based on Knowledge Graph Analysis. In: Stephanidis, C., Marcus, A., Rosenzweig, E., Rau, PL.P., Moallem, A., Rauterberg, M. (eds) HCI International 2020 - Late Breaking Papers: User Experience Design and Case Studies. HCII 2020. Lecture Notes in Computer Science(), vol 12423. Springer, Cham. https://doi.org/10.1007/978-3-030-60114-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60114-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60113-3

  • Online ISBN: 978-3-030-60114-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics