Skip to main content

Bayesian Inference by Symbolic Model Checking

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12289))

Included in the following conference series:

Abstract

This paper applies probabilistic model checking techniques for discrete Markov chains to inference in Bayesian networks. We present a simple translation from Bayesian networks into tree-like Markov chains such that inference can be reduced to computing reachability probabilities. Using a prototypical implementation on top of the Storm model checker, we show that symbolic data structures such as multi-terminal BDDs (MTBDDs) are very effective to perform inference on large Bayesian network benchmarks. We compare our result to inference using probabilistic sentential decision diagrams and vtrees, a scalable symbolic technique in AI inference tools.

This work is funded by the ERC AdG Projekt FRAPPANT (Grant Nr. 787914).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/hahaXD/psdd.

  2. 2.

    https://github.com/hahaXD/psdd_nips.

References

  1. Bayesian network Interchange Format. http://www.cs.washington.edu/dm/vfml/appendixes/bif.htm. Accessed 2019

  2. de Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Symbolic model checking of probabilistic processes using MTBDDs and the Kronecker representation. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 395–410. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0_27

    Chapter  MATH  Google Scholar 

  3. Bahar, R.I., et al.: Algebraic decision diagrams and their applications. Formal Methods Syst. Des. 10(2/3), 171–206 (1997)

    Article  Google Scholar 

  4. Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M., Ryan, M.: Symbolic model checking for probabilistic processes. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 430–440. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63165-8_199

    Chapter  Google Scholar 

  5. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabilities in Markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_43

    Chapter  Google Scholar 

  6. Batz, K., Kaminski, B.L., Katoen, J.-P., Matheja, C.: How long, O Bayesian network, will I sample thee? In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 186–213. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1_7

    Chapter  Google Scholar 

  7. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. IEEE Trans. Comput. 45(9), 993–1002 (1996)

    Article  Google Scholar 

  8. Bryant, R.E.: Binary decision diagrams. Handbook of Model Checking, pp. 191–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_7

    Chapter  Google Scholar 

  9. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.: JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_9

    Chapter  Google Scholar 

  10. Chaki, S., Gurfinkel, A.: BDD-based symbolic model checking. Handbook of Model Checking, pp. 219–245. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_8

    Chapter  MATH  Google Scholar 

  11. Chavira, M., Darwiche, A.: Compiling Bayesian networks with local structure. In: IJCAI, pp. 1306–1312. Professional Book Center (2005)

    Google Scholar 

  12. Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational Bayesian networks for exact inference. Int. J. Approx. Reason. 42(1–2), 4–20 (2006)

    Article  MathSciNet  Google Scholar 

  13. Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 42(2–3), 393–405 (1990)

    Article  MathSciNet  Google Scholar 

  14. Dagum, P., Luby, M.: Approximating probabilistic inference in Bayesian belief networks is NP-Hard. Artif. Intell. 60(1), 141–153 (1993)

    Article  MathSciNet  Google Scholar 

  15. Darwiche, A.: A logical approach to factoring belief networks. In: KR, pp. 409–420. Morgan Kaufmann (2002)

    Google Scholar 

  16. Darwiche, A.: New advances in compiling CNF into Decomposable Negation Normal Form. In: ECAI, pp. 328–332. IOS Press (2004)

    Google Scholar 

  17. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  18. Darwiche, A.: SDD: a new canonical representation of propositional knowledge bases. In: IJCAI, pp. 819–826. IJCAI/AAAI (2011)

    Google Scholar 

  19. Darwiche, A.: A differential approach to inference in Bayesian networks. CoRR abs/1301.3847 (2013)

    Google Scholar 

  20. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A STORM is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31

    Chapter  Google Scholar 

  21. Deininger, D., Dimitrova, R., Majumdar, R.: Symbolic model checking for factored probabilistic models. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 444–460. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_28

    Chapter  MATH  Google Scholar 

  22. Fujita, M., McGeer, P.C., Yang, J.C.: Multi-terminal binary decision diagrams: an efficient data structure for matrix representation. Formal Methods Syst. Des. 10(2/3), 149–169 (1997)

    Article  Google Scholar 

  23. Gehr, T., Misailovic, S., Vechev, M.: PSI: exact symbolic inference for probabilistic programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 62–83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_4

    Chapter  Google Scholar 

  24. Hahn, E.M., et al.: The 2019 comparison of tools for the analysis of quantitative formal models. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 69–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17502-3_5

    Chapter  Google Scholar 

  25. Holtzen, S., Millstein, T.D., Van den Broeck, G.: Symbolic exact inference for discrete probabilistic programs. CoRR abs/1904.02079 (2019)

    Google Scholar 

  26. Hopkins, M., Darwiche, A.: A practical relaxation of constant-factor treewidth approximation algorithms. In: Proceedings of the First European Workshop on Probabilistic Graphical Models. PGM, pp. 71–80. Citeseer (2002)

    Google Scholar 

  27. Jaeger, M.: Complex probabilistic modeling with recursive relational Bayesian networks. Ann. Math. Artif. Intell. 32(1–4), 179–220 (2001)

    Article  MathSciNet  Google Scholar 

  28. Jensen, F.V.: Bayesian Networks and Decision Graphs. Statistics for Engineering and Information Science. Springer, New York (2001). https://doi.org/10.1007/978-1-4757-3502-4

    Book  MATH  Google Scholar 

  29. Katoen, J.: The probabilistic model checking landscape. In: LICS, pp. 31–45. ACM (2016)

    Google Scholar 

  30. Kisa, D., Van den Broeck, G., Choi, A., Darwiche, A.: Probabilistic sentential decision diagrams. In: KR. AAAI Press (2014)

    Google Scholar 

  31. Klein, J., et al.: Advances in symbolic probabilistic model checking with PRISM. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 349–366. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_20

    Chapter  Google Scholar 

  32. Koller, D., Friedman, N.: Probabilistic Graphical Models - Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  33. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  34. Langmead, C., Jha, S., Clarke, E.: Temporal logics as query languages for dynamic Bayesian networks: application to d. melanogaster embryo development. Technical report, Carnegie Mellon University (2006)

    Google Scholar 

  35. Langmead, C.J.: Towards inference and learning in dynamic Bayesian networks using generalized evidence. Technical report, Carnegie Mellon University (2008)

    Google Scholar 

  36. Minato, S., Satoh, K., Sato, T.: Compiling Bayesian networks by symbolic probability calculation based on zero-suppressed BDDs. In: IJCAI, pp. 2550–2555 (2007)

    Google Scholar 

  37. Palaniappan, S.K., Thiagarajan, P.S.: Dynamic Bayesian networks: a factored model of probabilistic dynamics. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 17–25. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6_2

    Chapter  Google Scholar 

  38. Pipatsrisawat, K., Darwiche, A.: New compilation languages based on structured decomposability. In: AAAI, pp. 517–522. AAAI Press (2008)

    Google Scholar 

  39. Pipatsrisawat, T., Darwiche, A.: A lower bound on the size of decomposable negation normal form. In: AAAI. AAAI Press (2010)

    Google Scholar 

  40. Sanner, S., McAllester, D.A.: Affine algebraic decision diagrams (AADDs) and their application to structured probabilistic inference. In: IJCAI, pp. 1384–1390. Professional Book Center (2005)

    Google Scholar 

  41. Scutari, M.: Bayesian network repository. https://www.bnlearn.com. Accessed 2019

  42. Shachter, R.D., D’Ambrosio, B., Favero, B.D.: Symbolic probabilistic inference in belief networks. In: AAAI, pp. 126–131. AAAI Press/The MIT Press (1990)

    Google Scholar 

  43. Shih, A., Choi, A., Darwiche, A.: Formal verification of Bayesian network classifiers. In: Proceedings of Machine Learning Research. PGM, vol. 72, pp. 427–438. PMLR (2018)

    Google Scholar 

  44. Xue, Y., Choi, A., Darwiche, A.: Basing decisions on sentences in decision diagrams. In: AAAI. AAAI Press (2012)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Yujia Shen (UCLA) for his kind support with running the PSDD tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahare Salmani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salmani, B., Katoen, JP. (2020). Bayesian Inference by Symbolic Model Checking. In: Gribaudo, M., Jansen, D.N., Remke, A. (eds) Quantitative Evaluation of Systems. QEST 2020. Lecture Notes in Computer Science(), vol 12289. Springer, Cham. https://doi.org/10.1007/978-3-030-59854-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59854-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59853-2

  • Online ISBN: 978-3-030-59854-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics