Skip to main content

Importance of Interaction Structure and Stochasticity for Epidemic Spreading: A COVID-19 Case Study

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12289))

Included in the following conference series:

Abstract

In the recent COVID-19 pandemic, computer simulations are used to predict the evolution of the virus propagation and to evaluate the prospective effectiveness of non-pharmaceutical interventions. As such, the corresponding mathematical models and their simulations are central tools to guide political decision-making. Typically, ODE-based models are considered, in which fractions of infected and healthy individuals change deterministically and continuously over time.

In this work, we translate an ODE-based COVID-19 spreading model from literature to a stochastic multi-agent system and use a contact network to mimic complex interaction structures. We observe a large dependency of the epidemic’s dynamics on the structure of the underlying contact graph, which is not adequately captured by existing ODE-models. For instance, existence of super-spreaders leads to a higher infection peak but a lower death toll compared to interaction structures without super-spreaders. Overall, we observe that the interaction structure has a crucial impact on the spreading dynamics, which exceeds the effects of other parameters such as the basic reproduction number \(R_0\).

We conclude that deterministic models fitted to COVID-19 outbreak data have limited predictive power or may even lead to wrong conclusions while stochastic models taking interaction structure into account offer different and probably more realistic epidemiological insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at .

  2. 2.

    Available at .

  3. 3.

    At the time of finalizing this manuscript, the model of Khailaie et al. seems to be updated in a similar way. However, it also became more complex (see

  4. 4.
  5. 5.

    The number of fatalities in the figures is difficult to see, but it is (in the time limit) proportional to the number of recovered nodes.

References

  1. Arenas, A., et al.: Derivation of the effective reproduction number R for COVID-19 in relation to mobility restrictions and confinement. medRxiv (2020)

    Google Scholar 

  2. Ball, F., Sirl, D., Trapman, P.: Analysis of a stochastic sir epidemic on a random network incorporating household structure. Math. Biosci. 224(2), 53–73 (2010)

    Article  MathSciNet  Google Scholar 

  3. Barrett, C.L., et al.: Generation and analysis of large synthetic social contact networks. In: Proceedings of the 2009 Winter Simulation Conference (WSC), pp. 1003–1014. IEEE (2009)

    Google Scholar 

  4. Bi, Q., et al.: Epidemiology and transmission of COVID-19 in Shenzhen China: analysis of 391 cases and 1,286 of their close contacts. MedRxiv (2020)

    Google Scholar 

  5. Bistritz, I., Bambos, N., Kahana, D., Ben-Gal, I., Yamin, D.: Controlling contact network topology to prevent measles outbreaks. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2019)

    Google Scholar 

  6. Bock, W., et al.: Mitigation and herd immunity strategy for COVID-19 is likely to fail. medRxiv (2020)

    Google Scholar 

  7. Buchholz, U., et al.: Modellierung von beispielszenarien der sars-cov-2-ausbreitung und schwere in deutschland (2020). (only available in German)

    Google Scholar 

  8. Chinazzi, M., et al.: The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 368, 395–400 (2020)

    Article  Google Scholar 

  9. Dehning, J., et al.: Inferring COVID-19 spreading rates and potential change points for case number forecasts. arXiv preprint arXiv:2004.01105 (2020)

  10. Estrada, E., Knight, P.A.: A First Course in Network Theory. Oxford University Press, Oxford (2015)

    MATH  Google Scholar 

  11. Ferguson, N., et al.: Report 9: impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand (2020)

    Google Scholar 

  12. Ferguson, N.M., Cummings, D.A., Fraser, C., Cajka, J.C., Cooley, P.C., Burke, D.S.: Strategies for mitigating an influenza pandemic. Nature 442(7101), 448–452 (2006)

    Article  Google Scholar 

  13. Ghinai, I., et al.: Community transmission of SARS-CoV-2 at two family gatherings-Chicago, Illinois, February–March 2020 (2020)

    Google Scholar 

  14. Gleeson, J.P.: Binary-state dynamics on complex networks: pair approximation and beyond. Phys. Rev. X 3(2), 021004 (2013)

    Google Scholar 

  15. Grassly, N.C., Fraser, C.: Mathematical models of infectious disease transmission. Nat. Rev. Microbiol. 6(6), 477–487 (2008)

    Article  Google Scholar 

  16. Grossmann, G., Backenkoehler, M., Wolf, V.: Importance of interaction structure and stochasticity for epidemic spreading: a COVID-19 case study. ResearchGate (2020). https://www.researchgate.net/publication/341119247_Importance_of_Interaction_Structure_and_Stochasticity_for_Epidemic_Spreading_A_COVID-19_Case_Study

  17. Großmann, G., Bortolussi, L., Wolf, V.: Rejection-based simulation of non-Markovian agents on complex networks. In: Cherifi, H., Gaito, S., Mendes, J.F., Moro, E., Rocha, L.M. (eds.) COMPLEX NETWORKS 2019. SCI, vol. 881, pp. 349–361. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36687-2_29

    Chapter  Google Scholar 

  18. Hackl, J., Dubernet, T.: Epidemic spreading in urban areas using agent-based transportation models. Future Internet 11(4), 92 (2019)

    Article  Google Scholar 

  19. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function using NetworkX. Technical report, Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) (2008)

    Google Scholar 

  20. Halloran, M.E., et al.: Modeling targeted layered containment of an influenza pandemic in the United States. Proc. Nat. Acad. Sci. 105(12), 4639–4644 (2008)

    Article  Google Scholar 

  21. Hamouda, O., et al.: Schätzung der aktuellen entwicklung der sars-cov-2-epidemie in deutschland-nowcasting (2020)

    Google Scholar 

  22. Hellewell, J., et al.: Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Health 8, 488–496 (2020)

    Article  Google Scholar 

  23. Holme, P.: Representations of human contact patterns and outbreak diversity in sir epidemics. IFAC-PapersOnLine 48(18), 127–131 (2015)

    Article  Google Scholar 

  24. Huang, C., et al.: Insights into the transmission of respiratory infectious diseases through empirical human contact networks. Sci. Rep. 6, 31484 (2016)

    Article  Google Scholar 

  25. Ioannidis, J.P.: Coronavirus disease 2019: the harms of exaggerated information and non-evidence-based measures. Eur. J. Clin. Invest. 50(4), e13222 (2020)

    Article  Google Scholar 

  26. Khailaie, S., et al.: Estimate of the development of the epidemic reproduction number RT from coronavirus SARS-CoV-2 case data and implications for political measures based on prognostics. medRxiv (2020)

    Google Scholar 

  27. Kiss, I.Z., Miller, J.C., Simon, P.L.: Mathematics of Epidemics on Networks. IAM, vol. 46. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50806-1

    Book  MATH  Google Scholar 

  28. Kissler, S., Tedijanto, C., Goldstein, E., Grad, Y., Lipsitch, M.: Projecting the transmission dynamics of SARS-CoV-2 through the post-pandemic period (2020)

    Google Scholar 

  29. Klepac, P., et al.: Contacts in context: large-scale setting-specific social mixing matrices from the BBC pandemic project. medRxiv (2020). https://doi.org/10.1101/2020.02.16.20023754, https://www.medrxiv.org/content/early/2020/03/05/2020.02.16.20023754

  30. Lourenço, J., et al.: Fundamental principles of epidemic spread highlight the immediate need for large-scale serological surveys to assess the stage of the SARS-CoV-2 epidemic. medRxiv (2020)

    Google Scholar 

  31. Machens, A., Gesualdo, F., Rizzo, C., Tozzi, A.E., Barrat, A., Cattuto, C.: An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices. BMC Infect. Dis. 13(1), 185 (2013). https://doi.org/10.1186/1471-2334-13-185

    Article  Google Scholar 

  32. Masuda, N., Holme, P. (eds.): Temporal Network Epidemiology. TB. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5287-3

    Book  MATH  Google Scholar 

  33. McCaw, J.M., et al.: Comparison of three methods for ascertainment of contact information relevant to respiratory pathogen transmission in encounter networks. BMC Infect. Dis. 10(1), 166 (2010)

    Article  Google Scholar 

  34. Milne, G.J., Kelso, J.K., Kelly, H.A., Huband, S.T., McVernon, J.: A small community model for the transmission of infectious diseases: comparison of school closure as an intervention in individual-based models of an influenza pandemic. PloS One 3(12), e4005 (2008)

    Article  Google Scholar 

  35. Nowzari, C., Preciado, V.M., Pappas, G.J.: Analysis and control of epidemics: a survey of spreading processes on complex networks. IEEE Control Syst. Mag. 36(1), 26–46 (2016)

    Article  MathSciNet  Google Scholar 

  36. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)

    Article  MathSciNet  Google Scholar 

  37. Perez, L., Dragicevic, S.: An agent-based approach for modeling dynamics of contagious disease spread. Int. J. Health Geogr. 8(1), 50 (2009). https://doi.org/10.1186/1476-072X-8-50

    Article  Google Scholar 

  38. Prakash, B.A., Chakrabarti, D., Valler, N.C., Faloutsos, M., Faloutsos, C.: Threshold conditions for arbitrary cascade models on arbitrary networks. Knowl. Inf. Syst. 33(3), 549–575 (2012). https://doi.org/10.1007/s10115-012-0520-y

    Article  Google Scholar 

  39. Preciado, V.M., Zargham, M., Enyioha, C., Jadbabaie, A., Pappas, G.: Optimal vaccine allocation to control epidemic outbreaks in arbitrary networks. In: 52nd IEEE Conference on Decision and Control, pp. 7486–7491. IEEE (2013)

    Google Scholar 

  40. Prem, K., et al.: The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Publ. Health 5, e261–e270 (2020)

    Article  Google Scholar 

  41. Pung, R., et al.: Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. Lancet 395, 1039–1046 (2020)

    Article  Google Scholar 

  42. Rader, B., et al.: Crowding and the epidemic intensity of COVID-19 transmission. medRxiv (2020). https://doi.org/10.1101/2020.04.15.20064980, https://www.medrxiv.org/content/early/2020/04/20/2020.04.15.20064980

  43. Riou, J., Althaus, C.L.: Pattern of early human-to-human transmission of wuhan2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance 25(4), 2000058 (2020)

    Article  Google Scholar 

  44. Salathé, M., Kazandjieva, M., Lee, J.W., Levis, P., Feldman, M.W., Jones, J.H.: A high-resolution human contact network for infectious disease transmission. Proc. Nat. Acad. Sci. 107(51), 22020–22025 (2010)

    Article  Google Scholar 

  45. Salehi, M., Sharma, R., Marzolla, M., Magnani, M., Siyari, P., Montesi, D.: Spreading processes in multilayer networks. IEEE Trans. Netw. Sci. Eng. 2(2), 65–83 (2015)

    Article  Google Scholar 

  46. Sapiezynski, P., Stopczynski, A., Lassen, D.D., Lehmann, S.: Interaction data from the Copenhagen Networks Study. Sci. Data 6(1), 1–10 (2019)

    Article  Google Scholar 

  47. Soriano-Panos, D., Ghoshal, G., Arenas, A., Gómez-Gardenes, J.: Impact of temporal scales and recurrent mobility patterns on the unfolding of epidemics. J. Stat. Mech. Theory Exp. 2020(2), 024006 (2020)

    Article  MathSciNet  Google Scholar 

  48. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling. Princeton university Press, Princeton (2009)

    Book  Google Scholar 

  49. Van Mieghem, P., Van de Bovenkamp, R.: Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks. Phys. Rev. Lett. 110(10), 108701 (2013)

    Article  Google Scholar 

  50. Vynnycky, E., White, R.: An Introduction to Infectious Disease Modelling. OUP Oxford, Oxford (2010)

    Google Scholar 

  51. Wilson, N., Barnard, L.T., Kvalsig, A., Verrall, A., Baker, M.G., Schwehm, M.: Modelling the potential health impact of the COVID-19 pandemic on a hypothetical European country. medRxiv (2020)

    Google Scholar 

  52. Wilson, N., Barnard, L.T., Kvalsvig, A., Baker, M.: Potential health impacts from the COVID-19 pandemic for New Zealand if eradication fails: report to the NZ ministry of health (2020)

    Google Scholar 

Download references

Acknowledgements

We thank Luca Bortolussi and Thilo Krüger for helpful comments regarding the manuscript. This work was partially funded by the DFG project MULTIMODE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit Großmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Großmann, G., Backenköhler, M., Wolf, V. (2020). Importance of Interaction Structure and Stochasticity for Epidemic Spreading: A COVID-19 Case Study. In: Gribaudo, M., Jansen, D.N., Remke, A. (eds) Quantitative Evaluation of Systems. QEST 2020. Lecture Notes in Computer Science(), vol 12289. Springer, Cham. https://doi.org/10.1007/978-3-030-59854-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59854-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59853-2

  • Online ISBN: 978-3-030-59854-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics