Skip to main content

Local Search and Constraint Programming for a Real-World Examination Timetabling Problem

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2020)

Abstract

We investigate the examination timetabling problem in the context of Italian universities. The outcome is the definition of a general problem that can be applied to a large set of universities, but is quite different in many aspects from the classical versions proposed in the literature.

We propose both a metaheuristic approach based on Simulated Annealing and a Constraint Programming model in MiniZinc. We compare the results of the metaheuristic approach (properly tuned) with the available MiniZinc back-ends on a large set of diverse real-world instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Battistutta, M., Schaerf, A., Urli, T.: Feature-based tuning of single-stage simulated annealing for examination timetabling. Ann. Oper. Res. 252(2), 239–254 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A., Urli, T.: Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem. Comput. Oper. Res. 65, 83–92 (2016)

    Article  MathSciNet  Google Scholar 

  3. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race: an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Bykov, Y., Petrovic, S.: An initial study of a novel step counting hill climbing heuristic applied to timetabling problems. In: Proceedings of the 6th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA-13), pp. 691–693 (2013)

    Google Scholar 

  5. Carter, M.W., Laporte, G., Lee, S.Y.: Examination timetabling: algorithmic strategies and applications. J. Oper. Res. Soc. 74, 373–383 (1996)

    Article  Google Scholar 

  6. Ceschia, S., Di Gaspero, L., Schaerf, A.: Design, engineering, and experimental analysis of a simulated annealing approach to the post-enrolment course timetabling problem. Comput. Oper. Res. 39, 1615–1624 (2012)

    Article  Google Scholar 

  7. Franzin, A., Stützle, T.: Revisiting simulated annealing: a component-based analysis. Comput. Oper. Res. 104, 191–206 (2019)

    Article  MathSciNet  Google Scholar 

  8. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Chapman and Hall, London (1964)

    Book  Google Scholar 

  9. Kirkpatrick, S., Gelatt, D., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  10. Leite, N., Fernandes, C., Melício, F., Rosa, A.: A cellular memetic algorithm for the examination timetabling problem. Comput. Oper. Res. 94, 118–138 (2018)

    Article  MathSciNet  Google Scholar 

  11. Leite, N., Melício, F., Rosa, A.: A fast simulated annealing algorithm for the examination timetabling problem. Expert Syst. Appl. 122, 137–151 (2019)

    Article  Google Scholar 

  12. McCollum, B., et al.: Setting the research agenda in automated timetabling: the second international timetabling competition. INFORMS J. Comput. 22(1), 120–130 (2010)

    Article  MathSciNet  Google Scholar 

  13. Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A hybrid algorithm for the examination timetabling problem. In: Burke, E., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 207–231. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Müller, T.: Real-life examination timetabling. J. Sched. 19(3), 257–270 (2014)

    Article  MathSciNet  Google Scholar 

  15. Qu, R., Burke, E., McCollum, B., Merlot, L., Lee, S.: A survey of search methodologies and automated system development for examination timetabling. J. Sched. 12(1), 55–89 (2009)

    Article  MathSciNet  Google Scholar 

  16. Schaerf, A.: A survey of automated timetabling. Artif. Intell. Rev. 13(2), 87–127 (1999)

    Article  Google Scholar 

  17. Urli, T.: json2run: a tool for experiment design & analysis. CoRR abs/1305.1112 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Schaerf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Battistutta, M., Ceschia, S., De Cesco, F., Di Gaspero, L., Schaerf, A., Topan, E. (2020). Local Search and Constraint Programming for a Real-World Examination Timetabling Problem. In: Hebrard, E., Musliu, N. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2020. Lecture Notes in Computer Science(), vol 12296. Springer, Cham. https://doi.org/10.1007/978-3-030-58942-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58942-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58941-7

  • Online ISBN: 978-3-030-58942-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics