Bilevel Tolls Optimization Problem with Quadratic Costs

Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 138)


As usual, we formulate the Tolls Optimization Problem (TOP) as a single-leader-multi-follower game that occurs in a multi-commodity highway network. The usual parameters for this formulation are the following.


  1. 1.
    Didi-Biha, M., Marcotte, P., Savard, G.: Path-based formulation of a bilevel toll setting problem. In: Dempe, S., Kalashnikov, V.V. (eds.) Optimization with Multi-Valued Mappings: Theory, Applications and Algorithms, pp. 29–50. Springer Science, Boston, MA (2006)CrossRefGoogle Scholar
  2. 2.
    Kalashnikov, V.V., Herrera, R.C., Camacho, F., Kalashnykova, N.I.: A heuristic algorithm solving bilevel toll optimization problems. Int. J. Logist. Manag. 27(1), 31–51 (2016)CrossRefGoogle Scholar
  3. 3.
    Hadigheh, A.G., Romanko, O., Terlaky, T.: Sensitivity analysis in convex quadratic optimization: simultaneous perturbation of the objective and right-hand-side vectors. Algorithm. Oper. Res. 2, 94–111 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Renpu, G.E.: A filled function method for finding a global minimizer of a function of several variables. Math. Program. 46(1), 191–204 (1990)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Wan, Z., Yuan, L., Chen, J.: A filled function method for nonlinear systems of equalities and inequalities. Comput. Appl. Math. 31(2), 391–405 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Wu, Z.Y., Mammadov, M., Bai, F.S., Yang, Y.J.: A filled function method for nonlinear equations. Appl. Math. Comput. 189(2), 1196–1204 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Kalashnikov, V.V., Kreinovich, V., Flores-Muñiz, J.G., Kalashnykova, N.: Structure of filled functions: why gaussian and cauchy templates are most efficient. Int. J. Comb. Optim. Probl. Inform. 7(3), 87–93 (2016)Google Scholar
  8. 8.
    Flores-Muñiz, J.G., Kalashnikov, V.V., Kreinovich, V., Kalashnykova, N.: Gaussian and cauchy functions in the filled function method - why and what next: on the example of optimizing road tolls. Acta Polytechnica Hungarica 14(3), 237–250 (2017)Google Scholar
  9. 9.
    Kalashnikov, V.V., Camacho, F., Askin, R., Kalashnykova, N.I.: Comparison of algorithms solving a bilevel toll setting problem. Int. J. Innov. Comput. Inf. Control 6(8), 3529–3549 (2010)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Department of Physics and MathematicsUniversidad Autoonoma de Nuevo LéonSan Nicolas de los GarzaMexico
  2. 2.Department of Systems and Industrial EngineeringTecnologico de Monterrey ITESM/Campus MonterreyMonterreyMexico
  3. 3.Department of Computer ScienceUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations