Advertisement

Introduction

Chapter
  • 378 Downloads
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 138)

Abstract

Researchers in the field of mathematical economics have extensively and intensively studied mixed oligopoly models. In contrast to the classical oligopoly, a mixed oligopoly, apart from standard producers who seek to maximize their net profit, usually includes at least one public company trying to optimize another objective function involving indicators of the firm’s social responsibility.

References

  1. 1.
    Bowley, A.L.: The mathematical groundwork of economics. Soc. Forces 3(1), 185 (1924)zbMATHGoogle Scholar
  2. 2.
    Frisch, R.: Monopole-polypole: La notion de force dans l’économie. Nationaløkonomisk Tidsskrift 71, 241–259 (1933). In french, translated to english in “O. Bjerkholt (Ed.) (1995): Foundation of Modern Econometrics The Selected Essays of Ragnar Frisch, Vols. I and II, Edward Elgar, Aldershot, UK”Google Scholar
  3. 3.
    Laitner, J.P.: “RATIONAL” duopoly equilibria. Q. J. Econ. 95(4), 641–662 (1980)Google Scholar
  4. 4.
    Figuières, C., Jean-Marie, A., Quérou, N., Tidball, M.: Theory of Conjectural Variations. World Scientific, Singapore (2004)zbMATHCrossRefGoogle Scholar
  5. 5.
    Giocoli, N.: The escape from conjectural variations: the consistency condition in duopoly theory from bowley to fellner. Camb. J. Econ. 29(4), 601–618 (2005)CrossRefGoogle Scholar
  6. 6.
    Lindh, T.: The inconsistency of consistent conjectures: coming back to Cournot. J. Econ. Behav. Organ. 18(1), 69–90 (1992)CrossRefGoogle Scholar
  7. 7.
    Kalashnikov, V.V., Bulavsky, V.A., Kalashnykova, N.I., Castillo-Pérez, F.J.: Mixed oligopoly with consistent conjectures. Eur. J. Oper. Res. 210(3), 729–735 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bulavsky, V.A.: Structure of demand and equilibrium in a model of oligopoly. Econ. Math. Methods (Ekonomika i Matematicheskie Metody) 33, 112–134 (1997). In RussianGoogle Scholar
  9. 9.
    Hadigheh, A.G., Romanko, O., Terlaky, T.: Sensitivity analysis in convex quadratic optimization: simultaneous perturbation of the objective and right-hand-side vectors. Algorithm. Oper. Res. 2, 94–111 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Renpu, G.E.: A filled function method for finding a global minimizer of a function of several variables. Math. Program. 46(1), 191–204 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Cornes, R.C., Sepahvand, M.: Cournot vs Stackelberg equilibria with a public enterprise and international competition. In: Discussion Paper No. 03/12, University of Nottingham - School of Economics, United Kingdom (2003)Google Scholar
  12. 12.
    Fershtman, C.: The interdependence between ownership status and market structure: the case of privatization. Economica 57(22), 319–328 (1990)CrossRefGoogle Scholar
  13. 13.
    Matsumura, T.: Stackelberg mixed duopoly with a foreign competitor. Bull. Econ. Res. 55, 275–287 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Matsushima, N., Matsumura, T.: Mixed oligopoly and spatial agglomeration. Can. J. Econ. 36(1), 62–87 (2004)CrossRefGoogle Scholar
  15. 15.
    Matsumura, T., Kanda, O.: Mixed oligopoly at free entry markets. J. Econ. 84(1), 27–48 (2005)zbMATHCrossRefGoogle Scholar
  16. 16.
    Ireland, N.J., Law, P.J.: The Economics of Labour-Managed Enterprises. Croom Helm, London (1982)Google Scholar
  17. 17.
    Bonin, J.P., Putterman, L.G.: Economics of Cooperation and the Labor-managed Economy. Harwood Academic Publishers, Switzerland (1987)Google Scholar
  18. 18.
    Stephen, F.H. (ed.): The Performance of Labour-Managed Firms. Palgrave Macmillan, London (1982)Google Scholar
  19. 19.
    Putterman, L.: Labour-managed firms. In: Durlauf, S.N., Blume, L.E. (eds.) The New Palgrave Dictionary of Economics, vol. 4, pp. 791–795. Palgrave Macmillan, Hampshire (2008)Google Scholar
  20. 20.
    Saha, B., Sensarma, R.: State ownership, credit risk and bank competition: a mixed oligopoly approach. Macroecon. Financ. Emerg. Mark. Econ. 6(1), 1–13 (2013)Google Scholar
  21. 21.
    Mumcu, A., Oğur, S., Zenginobuz, U.: Competition between regulated and non-regulated generators on electric power networks. In: MPRA Paper 376. University Library of Munich, Germany (2001)Google Scholar
  22. 22.
    Kalashnykova, N.I., Bulavsky, V.A., Kalashnikov, V.V., Castillo-Pérez, F.J.: Consistent conjectural variations equilibrium in a mixed duopoly. J. Adv. Comput. Intell. Intell. Inform. 15(4), 425–432 (2011)CrossRefGoogle Scholar
  23. 23.
    Kalashnikov, V.V., Kalashnykova, N.I., Camacho, J.F.: Partially mixed duopoly and oligopoly: consistent conjectural variations equilibrium (ccve). part 1. In: Leyva-López, J.C., et al. (eds.) Fourth International Workshop on Knowledge Discovery, Knowledge Management and Decision Support. Atlantis Press, Mexico , pp. 198–206 (2013)Google Scholar
  24. 24.
    Kalashnikov, V.V., Bulavsky, V.A., Kalashnykova, N.I., Watada, J., Hernández-Rodríguez, D.J.: Analysis of consistent equilibria in a mixed duopoly. J. Adv. Comput. Intell. Intell. Inform. 18(6), 962–970 (2014)CrossRefGoogle Scholar
  25. 25.
    Liu, Y.F., Ni, Y.X., Wu, F.F., Cai, B.: Existence and uniqueness of consistent conjectural variation equilibrium in electricity markets. Int. J. Electr. Power Energy Syst. 29(6), 455–461 (2007)CrossRefGoogle Scholar
  26. 26.
    Bulavsky, V.A., Kalashnikov, V.V.: One-parametric method to study equilibrium. Econ. Math. Methods (Ekonomika i Matematicheskie Metody) 30, 129–138 (1994). In RussianGoogle Scholar
  27. 27.
    Bulavsky, V.A., Kalashnikov, V.V.: Equilibrium in generalized Cournot and Stackelberg models. Econ. Math. Methods (Ekonomika i Matematicheskie Metody) 31, 164–176 (1995). In RussianGoogle Scholar
  28. 28.
    Isac, G., Bulavsky, V.A., Kalashnikov, V.V.: Complementarity, Equilibrium, Efficiency and Economics. Kluwer Academic Publishers, Dordrecht (2002)zbMATHCrossRefGoogle Scholar
  29. 29.
    Kalashnikov, V.V., Kemfert, C., Kalashnikov-Jr, V.V.: Conjectural variations equilibrium in a mixed duopoly. Eur. J. Oper. Res. 192(3), 717–729 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Kalashnikov, V.V., Cordero, A.E., Kalashnikov-Jr, V.V.: Cournot and Stackelberg equilibrium in mixed duopoly models. Optimization 59(5), 689–706 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Kreps, D.M., Scheinkman, J.A.: Quantity precommitment and Bertrand competition yield Cournot outcomes. Bell J. Econ. 14(2), 326–337 (1983)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Murphy, F.H., Smeers, Y.: Generation capacity expansion in imperfectly competitive restructured electricity markets. Oper. Res. 53(4), 646–661 (2005)zbMATHCrossRefGoogle Scholar
  33. 33.
    Kimbrough, S.O., Murphy, F.H., Smeers, Y.: Extending Cournot: when does insight dissipate? Paper No. 14-036, Fox School of Business Research (2014)Google Scholar
  34. 34.
    Allaz, B., Vila, J.L.: Cournot competition, forward markets and efficiency. J. Econ. Theory 59(1), 1–16 (1993)zbMATHCrossRefGoogle Scholar
  35. 35.
    Driskill, R.A., McCafferty, S.: Dynamic duopoly with output adjustment costs in international markets: taking the conjecture out of conjectural variations. In: Feenstra, R.C. (ed.) Trade Policies for International Competitiveness, pp. 125–144. University of Chicago Press, United States (1989)Google Scholar
  36. 36.
    Kalashnikov, V.V., Bulavsky, V.A., Kalashnykova, N.I., López-Ramos, F.: Consistent conjectures are optimal Cournot-Nash strategies in the meta-game. Optimization 66(12), 2007–2024 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Kalashnykova, N.I., Bulavsky, V.A., Kalashnikov, V.V.: Consistent conjectures as optimal nash strategies in the upper level game. ICIC Express Lett. 6(4), 965–970 (2012)Google Scholar
  38. 38.
    Kress, D., Pesch, E.: Competitive location and pricing on networks with random utilities. Netw. Spat. Econ. 16(3), 837–863 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1969)zbMATHGoogle Scholar
  40. 40.
    Braess, D., Nagurney, A., Wakolbinger, T.: On a paradox of traffic planning. INFORMS 39(4), 446–450 (2005)Google Scholar
  41. 41.
    Magnanti, T.L., Wong, R.T.: Network design and transportation planning: models and algorithms. Transp. Sci. 18(1), 1–55 (1984)CrossRefGoogle Scholar
  42. 42.
    Marcotte, P.: Network design problem with congestion effects: a case of bilevel programming. Math. Program. 34(2), 142–162 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Dempe, S., Lohse, S.: Best highway toll assigning models and an optimality test (in German), Preprint, TU Bergakademie Freiberg, Nr. 2005-6, Fakultät für Mathematik und Informatik, Freiberg (2005)Google Scholar
  44. 44.
    Didi-Biha, M., Marcotte, P., Savard, G.: Path-based formulation of a bilevel toll setting problem. In: Dempe, S., Kalashnikov, V.V. (eds.) Optimization with Multi-Valued Mappings: Theory, Applications and Algorithms, pp. 29–50. Springer Science, Boston, MA (2006)CrossRefGoogle Scholar
  45. 45.
    Dempe, S., Starostina, T.: Optimal toll charges: fuzzy optimization approach. In: Heyde, F., Lóhne, A., Tammer, C. (eds.) Methods of Multicriteria Decision - Theory and Applications, pp. 29–45. Shaker Verlag, Aachen (2009)Google Scholar
  46. 46.
    Labbé, M., Marcotte, P., Savard, G.: On a class of bilevel programs. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Related Topics, pp. 183–206. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  47. 47.
    Brotcorne, L.: Operational and strategic approaches to traffic routers’ problems (in French), Ph.D. thesis, Université Libre de Bruxelles (1998)Google Scholar
  48. 48.
    Kalashnikov, V.V., Kalashnykova, N.I., Herrera, R.C.: Solving bilevel toll optimization problems by a direct algorithm using sensitivity analysis. In: Proceedings of the 2011 New Orleans International Academic Conference. New Orleans, LA, pp. 1009–1018 (2011)Google Scholar
  49. 49.
    Labbé, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its applications to optimal highway pricing. Manag. Sci. 44(12), 1608–1622 (1998)zbMATHCrossRefGoogle Scholar
  50. 50.
    Roch, S., Savard, G., Marcotte, P.: Design and analysis of an algorithm for stackelberg network pricing. Networks 46(1), 57–67 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Brotcorne, L., Cirinei, F., Marcotte, P., Savard, G.: An exact algorithm for the network pricing problem. Discrete Optim. 8(2), 246–258 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Brotcorne, L., Cirinei, F., Marcotte, P., Savard, G.: A tabu search algorithm for the network pricing problem. Comput. Oper. Res. 39(11), 2603–2611 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Dempe, S., Zemkoho, A.B.: Bilevel road pricing; theoretical analysis and optimality conditions. Ann. Oper. Res. 196(1), 223–240 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Kalashnikov, V.V., Herrera, R.C., Camacho, F., Kalashnykova, N.I.: A heuristic algorithm solving bilevel toll optimization problems. Int. J. Logist. Manag. 27(1), 31–51 (2016)CrossRefGoogle Scholar
  55. 55.
    Wan, Z., Yuan, L., Chen, J.: A filled function method for nonlinear systems of equalities and inequalities. Comput. Appl. Math. 31(2), 391–405 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Wu, Z.Y., Mammadov, M., Bai, F.S., Yang, Y.J.: A filled function method for nonlinear equations. Appl. Math. Comput. 189(2), 1196–1204 (2007)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Kalashnikov, V.V., Camacho, F., Askin, R., Kalashnykova, N.I.: Comparison of algorithms solving a bilevel toll setting problem. Int. J. Innov. Comput. Inf. Control 6(8), 3529–3549 (2010)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Department of Physics and MathematicsUniversidad Autoonoma de Nuevo LéonSan Nicolas de los GarzaMexico
  2. 2.Department of Systems and Industrial EngineeringTecnologico de Monterrey ITESM/Campus MonterreyMonterreyMexico
  3. 3.Department of Computer ScienceUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations