Skip to main content

Modifications of Prony’s Method for the Recovery and Sparse Approximation with Generalized Exponential Sums

  • Conference paper
  • First Online:
Approximation Theory XVI (AT 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 336))

Included in the following conference series:

Abstract

In this survey we describe some modifications of Prony’s method. In particular, we consider the recovery of general expansions into eigenfunctions of linear differential operators of first order. We show, how these expansions can be reconstructed from function samples using generalized shift operators. We derive an ESPRIT-like algorithm for the generalized recovery method and illustrate, how the method can be simplified if some frequency parameters are known beforehand. Furthermore, we present a modification of Prony’s method for sparse approximation with exponential sums which leads to a non-linear least-squares problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamjan, V., Arov, D., Krein, M.: Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem. Math. USSR Sb. 86, 34–75 (1971)

    MathSciNet  MATH  Google Scholar 

  2. Andersson, F., Carlsson, M., de Hoop, M.: Sparse approximation of functions using sums of exponentials and AAK theory. J. Approx. Theory 163, 213–248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baechler, G., Scholefield, A., Baboulaz, L., Vetterli, M.: Sampling and exact reconstruction of pulses with variable width. IEEE Trans. Signal Process. 65(10), 2629–2644 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barone, P.: On the distribution of poles of Padé approximants to the Z-transform of complex Gaussian white noise. J. Approx. Theory 132(2), 224–240 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19, 17–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Braess, D., Hackbusch, W.: Approximation of 1∕x by exponential sums in [1, ). IMA J. Numer. Anal. 25, 685–697 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bresler, Y., Macovski, A.: Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Trans. Acoust. Speech Signal Process. 34(5), 1081–1089 (1986)

    Article  Google Scholar 

  8. Chunaev, P., Danchenko, V.: Approximation by amplitude and frequency operators. J. Approx. Theory 207, 1–31 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cuyt, A., Tsai, M.N., Verhoye, M., Lee, W.S.: Faint and clustered components in exponential analysis. Appl. Math. Comput. 327, 93–103 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Dragotti, P., Vetterli, M., Blu, T.: Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang–Fix. IEEE Trans. Signal Process. 55(5), 1741–1757 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Drmač, Z.: SVD of Hankel matrices in Vandermonde-Cauchy product form. Electron. Trans. Numer. Anal. 44, 593–623 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Hackbusch, W.: Computation of best l exponential sums for 1∕x by Remez’ algorithm. Comput. Vis. Sci. 20(1–2), 1–11 (2019)

    Article  MathSciNet  Google Scholar 

  13. Hauer, J., Demeure, C., Scharf, L.: Initial results in Prony analysis of power system response signals. IEEE Trans. Power Syst. 5(1), 80–89 (1990)

    Article  Google Scholar 

  14. Hua, Y., Sarkar, T.: On the total least squares linear prediction method for frequency estimation. IEEE Trans. Acoust. Speech Signal Process. 38(12), 2186–2189 (1990)

    Article  Google Scholar 

  15. Lang, M.C.: Least-squares design of IIR filters with prescribed magnitude and phase responses and a pole radius constraint. IEEE Trans. Signal Process. 48(11), 3109–3121 (2000)

    Article  Google Scholar 

  16. Levin, D.: Behavior preserving extension of univariate and bivariate functions. In: Hoggan, P. (ed.) Electronic Structure Methods with Applications to Experimental Chemistry, vol. 68, pp. 19–42. Proceedings of MEST 2012. Academic Press, Chennai (2014)

    Google Scholar 

  17. Manolakis, D., Ingle, V., Kogon, S.: Statistical and Adaptive Signal Processing. McGraw-Hill, Boston (2005)

    Google Scholar 

  18. Markovsky, I.: Low-Rank Approximation: Algorithms, Implementation, Applications, 2nd edn. Springer, Berlin (2018)

    MATH  Google Scholar 

  19. Osborne, M., Smyth, G.: A modified Prony algorithm for fitting functions defined by difference equations. SIAM J. Sci. Stat. Comput. 12, 362–382 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Osborne, M., Smyth, G.: A modified Prony algorithm for exponential function fitting. SIAM J. Sci. Comput. 16(1), 119–138 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peter, T., Plonka, G.: A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators. Inverse Prob. 29(2) (2013)

    Google Scholar 

  22. Plonka, G., Pototskaia, V.: Application of the AAK theory for sparse approximation of exponential sums (2016). Preprint. http://arxiv.org/pdf/1609.09603

  23. Plonka, G., Pototskaia, V.: Computation of adaptive Fourier series by sparse approximation of exponential sums. J. Fourier Anal. Appl. 25(4), 1580–1608 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Plonka, G., Tasche, M.: Prony methods for recovery of structured functions. GAMM-Mitteilungen 37(2), 239–258 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Plonka, G., Stampfer, K., Keller, I.: Reconstruction of stationary and non-stationary signals by the generalized Prony method. Anal. Appl. 17(2), 179–210 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Poh, K., Marziliano, P.: Compressive sampling of EEG signals with finite rate of innovation. EURASIP J. Adv. Signal Process. 2010, 183105 (2010)

    Google Scholar 

  27. Potts, D., Tasche, M.: Parameter estimation for exponential sums by approximate Prony method. Signal Process. 90(5), 1631–1642 (2010)

    Article  MATH  Google Scholar 

  28. Potts, D., Tasche, M.: Parameter estimation for multivariate exponential sums. Electron. Trans. Numer. Anal. (40), 204–224 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Potts, D., Tasche, M.: Parameter estimation for nonincreasing exponential sums by Prony-like methods. Linear Algebra Appl. 439(4), 1024–1039 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Potts, D., Tasche, M.: Error estimates for the ESPRIT algorithm. In: Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics, pp. 621–648. Birkhäuser, Basel (2017)

    Google Scholar 

  31. Roy, R., Kailath, T.: Esprit estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37, 984–995 (1989)

    Article  MATH  Google Scholar 

  32. Skrzipek, M.R.: Signal recovery by discrete approximation and a Prony-like method. J. Comput. Appl. Math. 326, 193–203 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stampfer, K., Plonka, G.: The generalized operator-based Prony method. Constr. Approx. (2020). https://doi.org/10.1007/s00365-020-09501-6

  34. Stoica, P., Moses, R.L.: Spectral analysis of signals. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  35. Urigen, J., Blu, T., Dragotti, P.: FRI sampling with arbitrary kernels. IEEE Trans. Signal Process. 61(21), 5310–5323 (2013)

    Article  Google Scholar 

  36. Usevich, K., Markovsky, I.: Variable projection for affinely structured low-rank approximation in weighted 2-norms. J. Comput. Appl. Math. 272, 430–448 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50(6), 1417–1428 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, R., Plonka, G.: Optimal approximation with exponential sums by a maximum likelihood modification of Pronys method. Adv. Comput. Math. 45(3), 1657–1687 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support by the German Research Foundation in the framework of the RTG 2088. Further, the authors thank the reviewers for many helpful comments to improve the presentation of the results in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerlind Plonka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keller, I., Plonka, G. (2021). Modifications of Prony’s Method for the Recovery and Sparse Approximation with Generalized Exponential Sums. In: Fasshauer, G.E., Neamtu, M., Schumaker, L.L. (eds) Approximation Theory XVI. AT 2019. Springer Proceedings in Mathematics & Statistics, vol 336. Springer, Cham. https://doi.org/10.1007/978-3-030-57464-2_7

Download citation

Publish with us

Policies and ethics