Skip to main content

Equation-Based Models of Wound Healing and Collective Cell Migration

  • Chapter
  • First Online:
Complex Systems and Computational Biology Approaches to Acute Inflammation
  • 580 Accesses

Abstract

Wound healing is a complex process of repair of disrupted connectivity and functionality of a tissue caused by an injury. A wound is considered healed once tissue functionality is restored, often requiring the migration of cells into the wounded region and the proliferation of new cells to re-establish the original density of the tissue. Observations from multiple experimental and clinical wound scenarios have shown that cell migration, proliferation, and overall wound healing time are affected by factors such as wound geometry, tissue type, and cell–cell interactions. Various mathematical models of the mechanisms governing wound healing have been developed to quantify and analyze the effects of these factors on cell migration and proliferation. In this chapter, we review wound healing models based on mathematical equations, including ordinary differential equations and partial differential equations. While these various types of models differ in scope and applicability, the mechanical and mathematical principles underlying all of the models are related and can be used to accomplish three main objectives: to track the cell response and position following the induction of a wound, to understand the role of tissue growth factors in the healing process, and to predict the time required for a wound to heal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABM:

Agent-based model

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

FGF:

Fibroblast growth factor

GGH:

Glazier–Graner–Hogeweg

IEC-6:

Rat small intestine epithelial cell

KGF:

Keratinocyte growth factor

MAPK:

Mitogen-activated protein kinase

MDCK:

Madin–Darby canine kidney

ODE:

Ordinary differential equation

PDE:

Partial differential equation

ROS:

Reactive oxygen species

TGF:

Transforming growth factor

VEGF:

Vascular endothelial growth factor

References

  1. Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289. Epub 2004/02/10

    Article  CAS  Google Scholar 

  2. Reinke JM, Sorg H (2012) Wound repair and regeneration. Eur Surg Res 49(1):35–43. Epub 2012/07/17

    Article  CAS  Google Scholar 

  3. Singer AJ, Clark RAF (1999) Mechanisms of disease—cutaneous wound healing. N Engl J Med 341(10):738–746

    Article  CAS  Google Scholar 

  4. Javierre E, Vermolen FJ, Vuik C, van der Zwaag S (2009) A mathematical analysis of physiological and morphological aspects of wound closure. J Math Biol 59(5):605–630. Epub 2008/12/23

    Article  CAS  Google Scholar 

  5. Bardsley WG, Sattar A, Armstrong JR, Shah M, Brosnan P, Ferguson MWJ (1995) Quantitative analysis of wound healing. Wound Repair Regen 3:426–441

    Article  CAS  Google Scholar 

  6. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457

    Article  CAS  Google Scholar 

  7. Jacinto A, Martinez-Arias A, Martin P (2001) Mechanisms of epithelial fusion and repair. Nat Cell Biol 3(5):E117–EE23

    Article  CAS  Google Scholar 

  8. Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P et al (2008) Traction forces and rigidity sensing regulate cell functions. Soft Matter 4(9):1836–1843

    Article  CAS  Google Scholar 

  9. Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP et al (2009) Physical forces during collective cell migration. Nat Phys 5(6):426–430

    Article  CAS  Google Scholar 

  10. Haga H, Irahara C, Kobayashi R, Nakagaki T, Kawabata K (2005) Collective movement of epithelial cells on a collagen gel substrate. Biophys J 88(3):2250–2256

    Article  CAS  Google Scholar 

  11. du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Silberzan P et al (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci U S A 102(7):2390–2395

    Article  CAS  Google Scholar 

  12. Franz MG, Kuhn MA, Wright TE, Wachtel TL, Robson MC (2000) Use of the wound healing trajectory as an outcome determinant for acute wound healing. Wound Repair Regen 8(6):511–516

    Article  CAS  Google Scholar 

  13. Gilman T (2004) Wound outcomes: the utility of surface measures. Int J Low Extrem Wounds 3(3):125–132. Epub 2005/05/04

    Article  Google Scholar 

  14. de Vries G, Hillen T, Lewis M, Muller J, Schonfisch B (2006) A course in mathematical biology. Philadelphia. 309 p

    Google Scholar 

  15. Murray JD (2003) Mathematical biology II. Spatial models and biomedical applications. Springer, New York. 811 p

    Google Scholar 

  16. Cukjati D, Rebersek S, Karba R, Miklavcic D (2000) Modelling of chronic wound healing dynamics. Med Biol Eng Comput 38(3):339–347. Epub 2000/07/27

    Article  CAS  Google Scholar 

  17. Johnson M (1997) Using cluster analysis to develop a healing topology in vascular ulcers. J Vasc Nurs 23:524–528

    Google Scholar 

  18. Baker LL, Chambers R, DeMuth SK, Villar F (1997) Effects of electrical stimulation on wound healing in patients with diabetic ulcers. Diabetes Care 20(3):405–412. Epub 1997/03/01

    Article  CAS  Google Scholar 

  19. Jercinovic A, Karba R, Vodovnik L, Stefanovska A, Kroselj P, Turk R, Didic I, Benko H, Savrin R (1994) Low frequency pulsed current and pressure ulcer healing. IEEE Trans Rehab Eng 2:225–233

    Article  Google Scholar 

  20. Menke NB, Cain JW, Reynolds A, Chan DM, Segal RA, Witten TM et al (2010) An in silico approach to the analysis of acute wound healing. Wound Repair Regen 18(1):105–113. Epub 2009/12/17

    Article  Google Scholar 

  21. Maini PK, McElwain DL, Leavesley DI (2004) Traveling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells. Tissue Eng 10(3–4):475–482. Epub 2004/05/29

    Article  CAS  Google Scholar 

  22. Maini PK, McElwain DLS, Leavesley D (2004) Travelling waves in a wound healing assay. Appl Math Lett 17(5):575–580

    Article  Google Scholar 

  23. Sherratt JA, Murray JD (1990) Models of epidermal wound-healing. Proc R Soc Lond B 241(1300):29–36

    Article  CAS  Google Scholar 

  24. Sherratt JA, Murray JD (1991) Mathematical-analysis of a basic model for epidermal wound-healing. J Math Biol 29(5):389–404

    Article  CAS  Google Scholar 

  25. Sheardown H, Cheng YL (1996) Mechanisms of corneal epithelial wound healing. Chem Eng Sci 51(19):4517–4529

    Article  CAS  Google Scholar 

  26. Dale PD, Maini PK, Sherratt JA (1994) Mathematical-modeling of corneal epithelial wound-healing. Math Biosci 124(2):127–147

    Article  CAS  Google Scholar 

  27. Tremel A, Cai A, Tirtaatmadja N, Hughes BD, Stevens GW, Landman KA et al (2009) Cell migration and proliferation during monolayer formation and wound healing. Chem Eng Sci 64(2):247–253

    Article  CAS  Google Scholar 

  28. Gaffney EA, Maini PK, Sherratt JA, Tuft S (1999) The mathematical modelling of cell kinetics in corneal epithelial wound healing. J Theor Biol 197(1):15–40. Epub 1999/02/27

    Article  CAS  Google Scholar 

  29. Chen XF, Friedman A (2001) A free boundary problem arising in a model of wound healing. SIAM J Math Anal 32(4):778–800

    Article  Google Scholar 

  30. Dale PD, Olsen L, Maini PK, Sherratt JA (1995) Travelling waves in wound healing. Forma 100:205–222

    Google Scholar 

  31. Wearing HJ, Sherratt JA (2000) Keratinocyte growth factor signalling: a mathematical model of dermal-epidermal interaction in epidermal wound healing. Math Biosci 165(1):41–62

    Article  CAS  Google Scholar 

  32. Vitorino P, Meyer T (2008) Modular control of endothelial sheet migration. Genes Dev 22(23):3268–3281. Epub 2008/12/06

    Article  CAS  Google Scholar 

  33. Wolgemuth CW, Lee P (2011) Crawling cells can close wounds without purse strings or signaling. Biophys J 100(3):440–441

    Article  Google Scholar 

  34. Xue C, Friedman A, Sen CK (2009) A mathematical model of ischemic cutaneous wounds. Proc Natl Acad Sci U S A 106(39):16782–16787

    Article  CAS  Google Scholar 

  35. Mi Q, Swigon D, Riviere B, Cetin S, Vodovotz Y, Hackam DJ (2007) One-dimensional elastic continuum model of enterocyte layer migration. Biophys J 93(11):3745–3752

    Article  CAS  Google Scholar 

  36. Arciero JC, Mi Q, Branca MF, Hackam DJ, Swigon D (2011) Continuum model of collective cell migration in wound healing and colony expansion. Biophys J 100(3):535–543

    Article  CAS  Google Scholar 

  37. Posta F, Chou T (2010) A mathematical model of intercellular signaling during epithelial wound healing. J Theor Biol 266(1):70–78

    Article  CAS  Google Scholar 

  38. Dale PD, Sherratt JA, Maini PK (1996) A mathematical model for collagen fibre formation during foetal and adult dermal wound healing. Proc R Soc Lond B 263(1370):653–660

    CAS  Google Scholar 

  39. Dale PD, Sherratt JA, Maini PK (1997) Role of fibroblast migration in collagen fiber formation during fetal and adult dermal wound healing. Bull Math Biol 59(6):1077–1100

    Article  CAS  Google Scholar 

  40. Murray JD, Maini PK, Tranquillo RT (1988) Mechanochemical models for generating biological pattern and form in development. Phys Rep 171(2):59–84

    Article  Google Scholar 

  41. Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616):537–540

    Article  CAS  Google Scholar 

  42. Gaffney EA, Maini PK, McCaig CD, Zhao M, Forrester JV (1999) Modelling corneal epithelial wound closure in the presence of physiological electric fields via a moving boundary formalism. IMA J Math Appl Med Biol 16(4):369–393

    Article  CAS  Google Scholar 

  43. Tranquillo RT, Murray JD (1993) Mechanistic model of wound contraction. J Surg Res 55(2):233–247

    Article  CAS  Google Scholar 

  44. Olsen L, Sherratt JA, Maini PK (1996) A mathematical model for fibro-proliferative wound healing disorders. Bull Math Biol 58(4):787–808

    Article  CAS  Google Scholar 

  45. Sherratt JA (1993) Actin aggregation and embryonic epidermal wound-healing. J Math Biol 31(7):703–716

    Article  CAS  Google Scholar 

  46. Murray JD, Oster GF (1984) Cell traction models for generating pattern and form in morphogenesis. J Math Biol 19(3):265–279. Epub 1984/01/01

    Article  CAS  Google Scholar 

  47. Chaplain MAJ, Sleeman BD (1990) A mathematical-model for the production and secretion of tumor angiogenesis factor in tumors. IMA J Math Appl Med Biol 7(2):93–108

    Article  CAS  Google Scholar 

  48. Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60(5):857–899

    Article  CAS  Google Scholar 

  49. Pettet G, Chaplain MAJ, McElwain DLS, Byrne HM (1996) On the role of angiogenesis in wound healing. P R Soc Lond B 263(1376):1487–1493

    Article  CAS  Google Scholar 

  50. Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1–2):183–217

    Article  CAS  Google Scholar 

  51. Schugart RC, Friedman A, Zhao R, Sen CK (2008) Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. Proc Natl Acad Sci U S A 105(7):2628–2633. Epub 2008/02/15

    Article  CAS  Google Scholar 

  52. Dallon J, Sherratt J, Maini P, Ferguson M (2000) Biological implications of a discrete mathematical model for collagen deposition and alignment in dermal wound repair. IMA J Math Appl Med Biol 17(4):379–393

    Article  CAS  Google Scholar 

  53. Dimilla PA, Barbee K, Lauffenburger DA (1991) Mathematical-model for the effects of adhesion and mechanics on cell-migration speed. Biophys J 60(1):15–37

    Article  CAS  Google Scholar 

  54. Walker DC, Hill G, Wood SM, Smallwood RH, Southgate J (2004) Agent-based computational modeling of wounded epithelial cell monolayers. IEEE T Nanobiosci 3(3):153–163

    Article  CAS  Google Scholar 

  55. Walker DC, Southgate J, Hill G, Holcombe A, Hose DR, Wood SM et al (2004) The epitheliome: agent-based modelling of the social behaviour of cells. Biosystems 76(1–3):89–100

    Article  CAS  Google Scholar 

  56. Bindschadler M, McGrath JL (2007) Sheet migration by wounded monolayers as an emergent property of single-cell dynamics. J Cell Sci 120(5):876–884

    Article  CAS  Google Scholar 

  57. Ouaknin GY, Bar-Yoseph PZ (2009) Stochastic collective movement of cells and fingering morphology: no Maverick cells. Biophys J 97(7):1811–1821

    Article  CAS  Google Scholar 

  58. Fozard JA, Byrne HM, Jensen OE, King JR (2010) Continuum approximations of individual-based models for epithelial monolayers. Math Med Biol 27(1):39–74

    Article  CAS  Google Scholar 

  59. Byrne H, Drasdo D (2009) Individual-based and continuum models of growing cell populations: a comparison. J Math Biol 58(4–5):657–687

    Article  Google Scholar 

  60. Evans LC (2010) Partial differential equations. American Mathematical Society, Rhode Island

    Google Scholar 

  61. Reynolds A, Rubin J, Clermont G, Day J, Vodovotz Y, Ermentrout GB (2006) A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. J Theor Biol 242(1):220–236

    Article  CAS  Google Scholar 

  62. Day J, Rubin J, Vodovotz Y, Chow CC, Reynolds A, Clermont G (2006) A reduced mathematical model of the acute inflammatory response II. Capturing scenarios of repeated endotoxin administration. J Theor Biol 242(1):237–256

    Article  CAS  Google Scholar 

  63. Sherratt JA, Martin P, Murray JD, Lewis J (1992) Mathematical-models of wound-healing in embryonic and adult epidermis. IMA J Math Appl Med Biol 9(3):177–196

    Article  CAS  Google Scholar 

  64. Chen XF, Friedman A (2003) A free boundary problem for an elliptic-hyperbolic system: an application to tumor growth. SIAM J Math Anal 35(4):974–986

    Article  Google Scholar 

  65. Maini PK, Olsen L, Sherratt JA (2002) Mathematical models for cell-matrix interactions during dermal wound healing. Int J Bifurcat Chaos 12(9):2021–2029

    Article  Google Scholar 

  66. Sherratt JA, Dallon JC (2002) Theoretical models of wound healing: past successes and future challenges. C R Biol 325(5):557–564. Epub 2002/08/22

    Article  Google Scholar 

  67. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G et al (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709

    Article  CAS  Google Scholar 

  68. Holly SP, Larson MK, Parise LV (2000) Multiple roles of integrins in cell motility. Exp Cell Res 261(1):69–74

    Article  CAS  Google Scholar 

  69. Mogilner A (2009) Mathematics of cell motility: have we got its number? J Math Biol 58(1–2):105–134

    Article  Google Scholar 

  70. Prass M, Jacobson K, Mogilner A, Radmacher M (2006) Direct measurement of the lamellipodial protrusive force in a migrating cell. J Cell Biol 174(6):767–772

    Article  CAS  Google Scholar 

  71. Rorth P (2009) Collective cell migration. Annu Rev Cell Dev Biol 25:407–429

    Article  CAS  Google Scholar 

  72. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369

    Article  CAS  Google Scholar 

  73. Vitorino P, Hammer M, Kim J, Meyer T (2011) A steering model of endothelial sheet migration recapitulates monolayer integrity and directed collective migration. Mol Cell Biol 31(2):342–350. Epub 2010/10/27

    Article  CAS  Google Scholar 

  74. Foty RA, Steinberg MS (2005) The differential adhesion hypothesis: a direct evaluation. Dev Biol 278(1):255–263. Epub 2005/01/15

    Article  CAS  Google Scholar 

  75. Brodland GW (2004) Computational modeling of cell sorting, tissue engulfment, and related phenomena: a review. Appl Mech Rev 57(1):47–76

    Article  Google Scholar 

  76. Farooqui R, Fenteany G (2005) Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J Cell Sci 118(Pt 1):51–63. Epub 2004/12/09

    Article  CAS  Google Scholar 

  77. Fenteany G, Janmey PA, Stossel TP (2000) Signaling pathways and cell mechanics involved in wound closure by epithelial cell sheets. Curr Biol 10(14):831–838. Epub 2000/07/19

    Article  CAS  Google Scholar 

  78. Ilina O, Friedl P (2009) Mechanisms of collective cell migration at a glance. J Cell Sci 122(18):3203–3208

    Article  CAS  Google Scholar 

  79. Anand RJ, Leaphart CL, Mollen KP, Hackam DJ (2007) The role of the intestinal barrier in the pathogenesis of necrotizing enterocolitis. Shock 27(2):124–133. Epub 2007/01/17

    Article  CAS  Google Scholar 

  80. Block ER, Matela AR, SundarRaj N, Iszkula ER, Klarlund JK (2004) Wounding induces motility in sheets of corneal epithelial cells through loss of spatial constraints—role of heparin-binding epidermal growth factor-like growth factor signaling. J Biol Chem 279(23):24307–24312

    Article  CAS  Google Scholar 

  81. Rubinshtein LI (1971) The Stefan problem. American Mathematical Society, Providence

    Google Scholar 

  82. Gupta CS (2003) The classical Stefan problem. Elsevier, New York

    Google Scholar 

  83. Chaplain MAJ, Byrne HM (1996) Mathematical modeling of wound healing and tumor growth: two sides of the same coin. Wounds 8(2):42–48

    Google Scholar 

  84. Olsen L, Sherratt JA, Maini PK, Arnold F (1997) A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J Math Appl Med Biol 14(4):261–281

    Article  CAS  Google Scholar 

  85. Byrne HM, Chaplain MAJ, Evans DL, Hopkinson I (2000) Mathematical modeling of angiogenesis in wound healing: comparison of theory and experiment. J Theor Med 2:175–197

    Article  Google Scholar 

  86. Khain E, Sander LM, Schneider-Mizell CM (2007) The role of cell-cell adhesion in wound healing. J Stat Phys 128(1–2):209–218

    Article  Google Scholar 

  87. Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B et al (2007) Collective migration of an epithelial monolayer in response to a model wound. Pro Natl Acad Sci U S A 104(41):15988–15993

    Article  CAS  Google Scholar 

  88. Davidson LA, Joshi SD, Kim HY, von Dassow M, Zhang L, Zhou J (2010) Emergent morphogenesis: elastic mechanics of a self-deforming tissue. J Biomech 43(1):63–70

    Article  Google Scholar 

  89. Davidson L, von Dassow M, Zhou J (2009) Multi-scale mechanics from molecules to morphogenesis. Int J Biochem Cell Biol 41(11):2147–2162

    Article  CAS  Google Scholar 

  90. Tracqui P (1995) From passive diffusion to active cellular migration in mathematical models of tumour invasion. Acta Biotheor 43(4):443–464

    Article  CAS  Google Scholar 

  91. Stolarska MA, Kim Y, Othmer HG (2009) Multi-scale models of cell and tissue dynamics. Philos Trans A Math Phys Eng Sci 367(1902):3525–3553

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Swigon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arciero, J., Swigon, D. (2021). Equation-Based Models of Wound Healing and Collective Cell Migration. In: Vodovotz, Y., An, G. (eds) Complex Systems and Computational Biology Approaches to Acute Inflammation. Springer, Cham. https://doi.org/10.1007/978-3-030-56510-7_11

Download citation

Publish with us

Policies and ethics