Skip to main content

An Overview of the Translational Dilemma and the Need for Model-Based Precision Medicine

  • Chapter
  • First Online:
Complex Systems and Computational Biology Approaches to Acute Inflammation
  • 451 Accesses

Abstract

The translational dilemma, that is, the difficulty in achieving effective translation of basic mechanistic biomedical knowledge into effective therapeutics, remains the greatest challenge in biomedical research. Nowhere is this more apparent than in the reductionist approaches to understanding and manipulating the acute inflammatory response in the settings of sepsis, trauma/hemorrhage, wound healing, and related processes such as host–pathogen interactions. Despite numerous advances in defining novel molecules, pathways, and mechanisms, these advances remain, in general, in scientific silos that are poorly connected and lacking interoperability, reflected in the dearth of available therapeutics for these deadly diseases. Recently, an array of computational informatics methods falling under the rubric of “machine learning” or the more colloquial “Artificial Intelligence” have come to the fore. These methods, while representing a step forward from the reductionist paradigm they are supplanting, also suffer from various pitfalls. We suggest that mechanistically oriented complex systems and computational biology methods and approaches have advanced sufficiently to allow for knowledge generation, knowledge integration, and clinical translation in the settings of complex diseases related to the inflammatory response and could be integrated with machine learning approaches. This book brings together the current state of the art in complex systems and computational biology as applied to inflammatory diseases and lays out a paradigm for Model-Based Precision Medicine as a distinct pathway from what is commonly termed “Precision Medicine.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An G (2010) Closing the scientific loop: bridging correlation and causality in the petaflop age. Sci Transl Med 2:41ps34

    Article  PubMed  Google Scholar 

  2. An G, Vodovotz Y (2014) Translational systems biology: concepts and practice for the future of biomedical research. Elsevier, New York

    Google Scholar 

  3. Kotas ME, Medzhitov R (2015) Homeostasis, inflammation, and disease susceptibility. Cell 160(5):816–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vodovotz Y, Constantine G, Rubin J, Csete M, Voit EO, An G (2009) Mechanistic simulations of inflammation: current state and future prospects. Math Biosci 217:1–10

    Article  PubMed  Google Scholar 

  5. Vodovotz Y, An G (2009) Systems biology and inflammation. In: Yan Q (ed) Systems biology in drug discovery and development: methods and protocols. Springer Science & Business Media, Totowa, pp 181–201

    Google Scholar 

  6. Vodovotz Y (2010) Translational systems biology of inflammation and healing. Wound Repair Regen 18(1):3–7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Namas R, Ghuma A, Torres A, Polanco P, Gomez H, Barclay D et al (2009) An adequately robust early TNF-α response is a hallmark of survival following trauma/hemorrhage. PLoS One 4(12):e8406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neunaber C, Zeckey C, Andruszkow H, Frink M, Mommsen P, Krettek C et al (2011) Immunomodulation in polytrauma and polymicrobial sepsis—where do we stand? Recent Pat Inflamm Allergy Drug Discov 5(1):17–25

    Article  CAS  PubMed  Google Scholar 

  9. Almahmoud K, Abboud A, Namas RA, Zamora R, Sperry J, Peitzman AB et al (2019) Computational evidence for an early, amplified systemic inflammation program in polytrauma patients with severe extremity injuries. PLoS One 14(6):e0217577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schimunek L, Namas RA, Yin J, Liu D, Barclay D, El-Dehaibi F et al (2018) An enrichment strategy yields seven novel single nucleotide polymorphisms associated with mortality and altered TH17 responses following blunt trauma. Shock 49:259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Godin PJ, Buchman TG (1996) Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 24(7):1107–1116

    Article  CAS  PubMed  Google Scholar 

  12. Neugebauer EA, Willy C, Sauerland S (2001) Complexity and non-linearity in shock research: reductionism or synthesis? Shock 16(4):252–258

    Article  CAS  PubMed  Google Scholar 

  13. Complex systems and computational biology approaches to acute inflammation. Springer, New York; 2013

    Google Scholar 

  14. Chinnaiyan AM, Huber-Lang M, Kumar-Sinha C, Barrette TR, Shankar-Sinha S, Sarma VJ et al (2001) Molecular signatures of sepsis: multiorgan gene expression profiles of systemic inflammation. Am J Pathol 159(4):1199–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cobb JP, Brownstein BH, Watson MA, Shannon WD, Laramie JM, Qiu Y et al (2001) Injury in the era of genomics. Shock 15(3):165–170

    Article  CAS  PubMed  Google Scholar 

  16. Chung TP, Laramie JM, Province M, Cobb JP (2002) Functional genomics of critical illness and injury. Crit Care Med 30(1 Suppl):S51–S57

    Article  CAS  PubMed  Google Scholar 

  17. Cobb JP, O’Keefe GE (2004) Injury research in the genomic era. Lancet 363(9426):2076–2083

    Article  CAS  PubMed  Google Scholar 

  18. Yu SL, Chen HW, Yang PC, Peck K, Tsai MH, Chen JJ et al (2004) Differential gene expression in gram-negative and gram-positive sepsis. Am J Respir Crit Care Med 169(10):1135–1143

    Article  PubMed  Google Scholar 

  19. Wurfel MM (2007) Microarray-based analysis of ventilator-induced lung injury. Proc Am Thorac Soc 4(1):77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Edmonds RD, Vodovotz Y, Lagoa C, Dutta-Moscato J, Ching Y, Fink MP et al (2011) Transcriptomic response of murine liver to severe injury and hemorrhagic shock: a dual platform microarray analysis. Physiol Genomics 43:1170–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wong HR (2012) Clinical review: sepsis and septic shock—the potential of gene arrays. Crit Care 16(1):204

    Article  PubMed  PubMed Central  Google Scholar 

  22. Broadbent J, Walsh T, Upton Z (2010) Proteomics in chronic wound research: potentials in healing and health. Proteomics Clin Appl 4(2):204–214

    Article  CAS  PubMed  Google Scholar 

  23. Roy S, Sen CK (2012) miRNA in wound inflammation and angiogenesis. Microcirculation 19(3):224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morowitz MJ, Babrowski T, Carlisle EM, Olivas A, Romanowski KS, Seal JB et al (2011) The human microbiome and surgical disease. Ann Surg 253(6):1094–1101

    Article  PubMed  Google Scholar 

  25. Hartlova A, Krocova Z, Cerveny L, Stulik J (2011) A proteomic view of the host-pathogen interaction: the host perspective. Proteomics 11(15):3212–3220

    Article  CAS  PubMed  Google Scholar 

  26. Malnoy M, Martens S, Norelli JL, Barny MA, Sundin GW, Smits TH et al (2012) Fire blight: applied genomic insights of the pathogen and host. Annu Rev Phytopathol 50:475–494

    Article  CAS  PubMed  Google Scholar 

  27. Scicluna BP, van Vught LA, Zwinderman AH, Wiewel MA, Davenport EE, Burnham KL et al (2017) Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med 5(10):816–826

    Article  PubMed  Google Scholar 

  28. Sweeney TE, Azad TD, Donato M, Haynes WA, Perumal TM, Henao R et al (2018) Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters. Crit Care Med 46(6):915–925

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dominguez-Andres J, Fanucchi S, Joosten LAB, Mhlanga MM, Netea MG (2020) Advances in understanding molecular regulation of innate immune memory. Curr Opin Cell Biol 63:68–75

    Article  CAS  PubMed  Google Scholar 

  30. An G, Faeder J, Vodovotz Y (2008) Translational systems biology: introduction of an engineering approach to the pathophysiology of the burn patient. J Burn Care Res 29:277–285

    Article  PubMed  Google Scholar 

  31. Vodovotz Y, Csete M, Bartels J, Chang S, An G (2008) Translational systems biology of inflammation. PLoS Comput Biol 4:1–6

    Article  CAS  Google Scholar 

  32. Vodovotz Y, Constantine G, Faeder J, Mi Q, Rubin J, Sarkar J et al (2010) Translational systems approaches to the biology of inflammation and healing. Immunopharmacol Immunotoxicol 32:181–195

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mi Q, Li NYK, Ziraldo C, Ghuma A, Mikheev M, Squires R et al (2010) Translational systems biology of inflammation: potential applications to personalized medicine. Pers Med 7:549–559

    Article  Google Scholar 

  34. Day JD, Cockrell C, Namas R, Zamora R, An G, Vodovotz Y (2018) Inflammation and disease: modelling and modulation of the inflammatory response to alleviate critical illness. Curr Opin Syst Biol 12:22–29

    Article  PubMed  PubMed Central  Google Scholar 

  35. An G, Day J (2021) Precision systems medicine: a control discovery problem. In: Wolkenhauer, Olaf (ed.). Systems Medicine: Integrative, Qualitative and Computational Approaches, vol. 3, pp. 318–330. Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-801238-3.11513-2

  36. An G, Bartels J, Vodovotz Y (2011) In silico augmentation of the drug development pipeline: examples from the study of acute inflammation. Drug Dev Res 72:1–14

    Article  CAS  Google Scholar 

  37. Namas R, Zamora R, Namas R, An G, Doyle J, Dick TE et al (2012) Sepsis: something old, something new, and a systems view. J Crit Care 27:314.e1–314.e11

    Article  Google Scholar 

  38. An G, Nieman G, Vodovotz Y (2012) Computational and systems biology in trauma and sepsis: current state and future perspectives. Int J Burns Trauma 2:1–10

    PubMed  PubMed Central  Google Scholar 

  39. An G, Namas R, Vodovotz Y (2012) Sepsis: from pattern to mechanism and back. Crit Rev Biomed Eng 40:341–351

    Article  PubMed  PubMed Central  Google Scholar 

  40. An G, Nieman G, Vodovotz Y (2012) Toward computational identification of multiscale tipping points in multiple organ failure. Ann Biomed Eng 40:2412–2424

    Article  Google Scholar 

  41. Clermont G, Bartels J, Kumar R, Constantine G, Vodovotz Y, Chow C (2004) In silico design of clinical trials: a method coming of age. Crit Care Med 32:2061–2070

    Article  PubMed  Google Scholar 

  42. An G (2004) In-silico experiments of existing and hypothetical cytokine-directed clinical trials using agent based modeling. Crit Care Med 32:2050–2060

    Article  CAS  PubMed  Google Scholar 

  43. Li NYK, Verdolini K, Clermont G, Mi Q, Hebda PA, Vodovotz Y (2008) A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PLoS One 3:e2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nieman K, Brown D, Sarkar J, Kubiak B, Ziraldo C, Vieau C et al (2012) A two-compartment mathematical model of endotoxin-induced inflammatory and physiologic alterations in swine. Crit Care Med 40:1052–1063

    Article  PubMed  PubMed Central  Google Scholar 

  45. Parker RS, Clermont G (2010) Systems engineering medicine: engineering the inflammation response to infectious and traumatic challenges. J R Soc Interface 7(48):989–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dick TE, Molkov Y, Nieman G, Hsieh Y, Jacono FJ, Doyle J et al (2012) Linking inflammation and cardiorespiratory variability in sepsis via computational modeling. Front Physiol 3:222

    Article  PubMed  PubMed Central  Google Scholar 

  47. An G (2001) Agent-based computer simulation and SIRS: building a bridge between basic science and clinical trials. Shock 16(4):266–273

    Article  CAS  PubMed  Google Scholar 

  48. An G (2009) A model of TLR4 signaling and tolerance using a qualitative, particle event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC). Math Biosci 217:43–52

    Article  CAS  PubMed  Google Scholar 

  49. Kumar R, Clermont G, Vodovotz Y, Chow CC (2004) The dynamics of acute inflammation. J Theor Biol 230:145–155

    Article  CAS  PubMed  Google Scholar 

  50. Chow CC, Clermont G, Kumar R, Lagoa C, Tawadrous Z, Gallo D et al (2005) The acute inflammatory response in diverse shock states. Shock 24:74–84

    Article  CAS  PubMed  Google Scholar 

  51. Reynolds A, Rubin J, Clermont G, Day J, Vodovotz Y, Ermentrout GB (2006) A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. J Theor Biol 242:220–236

    Article  CAS  PubMed  Google Scholar 

  52. Day J, Rubin J, Vodovotz Y, Chow CC, Reynolds A, Clermont G (2006) A reduced mathematical model of the acute inflammatory response: II. Capturing scenarios of repeated endotoxin administration. J Theor Biol 242:237–256

    Article  CAS  PubMed  Google Scholar 

  53. Prince JM, Levy RM, Bartels J, Baratt A, Kane JM III, Lagoa C et al (2006) In silico and in vivo approach to elucidate the inflammatory complexity of CD14-deficient mice. Mol Med 12:88–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lagoa CE, Bartels J, Baratt A, Tseng G, Clermont G, Fink MP et al (2006) The role of initial trauma in the host’s response to injury and hemorrhage: insights from a comparison of mathematical simulations and hepatic transcriptomic analysis. Shock 26:592–600

    Article  CAS  PubMed  Google Scholar 

  55. Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2009) Modeling endotoxin-induced systemic inflammation using an indirect response approach. Math Biosci. 217:27–42

    Article  CAS  PubMed  Google Scholar 

  56. Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2009) In silico simulation of corticosteroids effect on an NFkB- dependent physicochemical model of systemic inflammation. PLoS One 4(3):e4706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dong X, Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2010) Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes. PLoS One 5(2):e9249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Scheff JD, Calvano SE, Lowry SF, Androulakis IP (2010) Modeling the influence of circadian rhythms on the acute inflammatory response. J Theor Biol 264(3):1068–1076

    Article  PubMed  Google Scholar 

  59. Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2011) A physiological model for autonomic heart rate regulation in human endotoxemia. Shock 35:229–239

    Article  PubMed  PubMed Central  Google Scholar 

  60. Scheff JD, Mavroudis PD, Calvano SE, Lowry SF, Androulakis IP (2011) Modeling autonomic regulation of cardiac function and heart rate variability in human endotoxemia. Physiol Genomics 43(16):951–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the authors that have joined us in this book. Our Translational Systems Biology work was supported in part by the National Institutes of Health grants R01GM67240, P50GM53789, R33HL089082, R01HL080926, R01AI080799, R01HL76157, R01DC008290, RO1GM107231, UO1DK072146, U01EB021960-01A1, 1RO1GM115839-01, UO1EB025825; Defense Advanced Research Projects Agency grant D20AC00002; Department of Defense grants W911 QY-14-1-0003, W81 XWH-13-2-0061, W81 XWH-15-1-0336, W81XWH-15-PRORP-OCRCA, and W81XWH-18-2-0051; National Institute on Disability and Rehabilitation Research grant H133E070024; National Science Foundation grant 0830-370-V601; a Shared University Research Award from IBM, Inc.; and grants from the Commonwealth of Pennsylvania, the Pittsburgh Lifesciences Greenhouse, and the Pittsburgh Tissue Engineering Initiative/Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Vodovotz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vodovotz, Y., An, G. (2021). An Overview of the Translational Dilemma and the Need for Model-Based Precision Medicine. In: Vodovotz, Y., An, G. (eds) Complex Systems and Computational Biology Approaches to Acute Inflammation. Springer, Cham. https://doi.org/10.1007/978-3-030-56510-7_1

Download citation

Publish with us

Policies and ethics