Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 910))

  • 750 Accesses

Abstract

The symbol spatialization process creates a new geometric layer between the connectionist layer and the symbolic layer. Connectionist networks produce vectors; Geometric layers promote these vectors into \(\mathscr {N}\)-Balls in higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I am greatly indebted to Ron Sun for the personal communication.

References

  • Antony, L., & Levine, J. (1988). On the proper treatment of the connection between connectionism and symbolism. Behavioral and Brain Sciences, 1, 23–44.

    Article  Google Scholar 

  • Bechtel, W. (1988). Connection and interlevel relationism. Behavioral and Brain Sciences, 1, 24–25.

    Article  Google Scholar 

  • Belew, R. K. (1988). Two constructive themes. Behavioral and Brain Sciences, 1, 25–26.

    Article  Google Scholar 

  • Carey, S. (2009). The origin of concepts. Oxford University Press.

    Google Scholar 

  • Cleland, C. E. (1988). Is Smolensky’s treatment of connectionism on the level? Behavioral and Brain Sciences, 1, 27–28.

    Article  Google Scholar 

  • Dellarosa, D. (1988). The psychological appeal of connectionism. Behavioral and Brain Sciences, 1, 28–29.

    Article  Google Scholar 

  • Dietrich, E., & Fields, C. (1988). Some assumptions underlying Smolensky’s treatment of connectionism. Behavioral and Brain Sciences, 1, 29–31.

    Article  Google Scholar 

  • Dong, T. (2008). A comment on RCC: From RCC to RCC++. Journal of Philosophical Logic, 37(4), 319–352.

    Article  MathSciNet  Google Scholar 

  • Dong, T. (2012). Recognizing variable environments—The theory of cognitive prism, Volume 388 of Studies in computational intelligence. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Dyer, M. G. (1988). The promise and problems of connectionism. Behavioral and Brain Sciences, 1, 32–33.

    Article  Google Scholar 

  • Elkan, C. (1993). The paradoxical success of fuzzy logic. IEEE Expert, 698–703.

    Google Scholar 

  • Grosse, R. B., Salakhutdinov, R., Freeman, W. T., & Tenenbaum, J. B. (2012). Exploiting compositionality to explore a large space of model structures. In Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, UAI’12 (pp. 306–315). Arlington, Virginia, USA: AUAI Press.

    Google Scholar 

  • Hunter, L. E. (1988). Some memory, but no mind. Behavioral and Brain Sciences, 1, 37–38.

    Article  Google Scholar 

  • Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of the National Academy of Sciences, 105, 10687–10692.

    Article  Google Scholar 

  • Lakoff, G. (1988). Smolensky, semantics, and the sensorimotor system. Behavioral and Brain Sciences, 1, 39–40.

    Article  Google Scholar 

  • Levinson, S. (1996). Frames of reference and Molyneux’s question: Cross-linguistic evidence. In P. Bloom, M. A. Peterson, L. Nadel, & M. F. Garrett (Eds.), Space and language (pp. 109–169). Cambridge: MIT Press.

    Google Scholar 

  • Li, X., Vilnis, L., Zhang, D., Boratko, M., & McCallum, A. (2019). Smoothing the geometry of box embeddings. In International Conference on Learning Representations (ICLR).

    Google Scholar 

  • Lu, S., Mao, J., Tenenbaum, J., & Wu, J. (2019). Neurally-guided structure inference. In K. Chaudhuri & R. Salakhutdinov (Eds.), Proceedings of the 36th International Conference on Machine Learning, Volume 97 of Proceedings of Machine Learning Research (pp. 4144–4153). Long Beach, California, USA: PMLR.

    Google Scholar 

  • Luria, A. R. (1966). Higher cortical functions in man. USA: Springer.

    Google Scholar 

  • McCarthy, J. (1988). Epistemological challenges for connectionism. Behavioral and Brain Sciences, 1, 44.

    Article  Google Scholar 

  • Nelson, R. J. (1988). Connections among connections. Behavioral and Brain Sciences, 1, 45–46.

    Article  Google Scholar 

  • Piaget, J., & Inhelder, B. (1948). La représentation de l’espace chez l’enfant. Bibliothèque de Philosophie Contemporaine, Paris: PUF. English translation by F. J. Langdon and J. L. Lunzer in 1956.

    Google Scholar 

  • Pinker, S. (1984). Language learnability and language development. Harvard University Press.

    Google Scholar 

  • Pinker, S., & Prince, A. (1988). On language and connectionism: Analysis of a parallel distributed processing model of language acquisition. Cognition, 28, 73–193.

    Article  Google Scholar 

  • Prince, A., & Pinker, S. (1988). Subsymbols aren’t much good outside of a symbol-processing architecture. Behavioral and Brain Sciences, 1, 46–47.

    Article  Google Scholar 

  • Rueckl, J. G. (1988). Making the connections. Behavioral and Brain Sciences, 1, 50–51.

    Article  Google Scholar 

  • Sejnowski, T. J., & Rosenberg, C. R. (1988). Neurocomputing: Foundations of research. In NETtalk: A parallel network that learns to read aloud (pp. 661–672). Cambridge, MA, USA: MIT Press.

    Google Scholar 

  • Smith, B. (1994). Topological foundations of cognitive science. In C. Eschenbach, C. Habel, & B. Smith (Eds.), Topological foundations of cognitive science. Buffalo, NY: Workshop at the FISI-CS.

    Google Scholar 

  • Smith, B. (2001). Fiat objects. Topoi, 20(2), 131–148.

    Article  Google Scholar 

  • Smolensky, P. (1988a). Putting together connectionism—Again. Behavioral and Brain Sciences, 1, 59–70.

    Google Scholar 

  • Smolensky, P. (1988b). On the proper treatment of connectionism. Behavioral and Brain Sciences, 1, 1–23.

    Google Scholar 

  • Sun, R. (2016). Implicit and explicit processes: Their relation, interaction, and competition. In L. Macchi, M. Bagassi, & R. Viale (Eds.), Cognitive unconscious and human rationality (pp. 27–257). Cambridge, MA: MIT Press.

    Google Scholar 

  • Sun, R., & Helie, S. (2010). Incubation, insight, and creative problem solving: A unified theory and a connectionist model. Psychological Review, 117(3), 994–1024.

    Article  Google Scholar 

  • Sun, R., Slusarz, P., & Terry, C. (2005). The interaction of the explicit and the implicit in skill learning: A dual-process approach. Psychological Review, 112(1), 159–192.

    Article  Google Scholar 

  • Woodfield, A., & Morton, A. (1988). The reality of the symbolic and subsymbolic systems. Behavioral and Brain Sciences, 1, 58.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Informations and Control, 8, 338–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiansi Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dong, T. (2021). Resolving the Symbol-Subsymbol Debates. In: A Geometric Approach to the Unification of Symbolic Structures and Neural Networks. Studies in Computational Intelligence, vol 910. Springer, Cham. https://doi.org/10.1007/978-3-030-56275-5_8

Download citation

Publish with us

Policies and ethics