Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 910))

  • 744 Accesses

Abstract

This chapter is the continued discussion on the last experiment in Chap. 6—Under what condition, can the precision for the Task of Membership-Validation reach 100%? We will create a new type of Geometric Connectionist Machines for Triple Classification task in Knowledge Graph reasoning. Our key question is: How shall we spatialize labeled tree structures onto vector embeddings?

A creature didn’t think in order to move; it just moved, and by moving it discovered the world that then formed the content of its thoughts.

— Larissa MacFarquhar “The mind-expanding ideas of Andy Clark” The New Yorker

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is to say, suppose that (\(h, r, t_x\)) holds and \(t_x\) has a sibling \(t_0\) in the training dataset such that (\(h, r, t_0\)), we initialize the \(\mathscr {N}\)-Ball of \(t_x\) the way we initialize the \(\mathscr {N}\)-Ball of \(t_0\).

  2. 2.

    https://figshare.com/articles/FB13nball_zip/7294295.

  3. 3.

    https://figshare.com/articles/WN11nball/7294307.

  4. 4.

    https://figshare.com/articles/WN18nball/7294316.

References

  • Auer, S., Bizer, C., Lehmann, J., Kobilarov, G., Cyganiak, R., & Ives, Z. (2007). DBpedia: A nucleus for a web of open data. In K. Aberer, K.-S. Choi, N. Noy, D. Allemang, K.-I. Lee, L. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber & P. Cudré-Mauroux (Eds.) ISWC07. Springer.

    Google Scholar 

  • Bishop, C. M. (2006). Pattern recognition and machine learning. Secaucus, NJ, USA: Springer.

    MATH  Google Scholar 

  • Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008). Freebase: A collaboratively created graph database for structuring human knowledge. In SIGMOD ’08 (pp. 1247–1250) New York, NY, USA: ACM.

    Google Scholar 

  • Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modelling multi-relational data. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.) Advances in Neural Information Processing Systems, 26, 2787–2795. Curran Associates, Inc.

    Google Scholar 

  • Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., & Smith, N. A. (2015). Retrofitting word vectors to semantic lexicons. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 1606–1615). ACL.

    Google Scholar 

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press.

    Google Scholar 

  • Han, X., Liu, Z., & Sun, M. (2016). Joint representation learning of text and knowledge for knowledge graph completion. CoRR. abs/1611.04125.

    Google Scholar 

  • He, S., Liu, K., Ji, G., & Zhao, J. (2015). Learning to represent knowledge graphs with gaussian embedding. In CIKM’15 (pp. 623–632). New York, USA: ACM.

    Google Scholar 

  • Ji, G., He, S., Xu, L., Liu, K., & Zhao, J. (2015). Knowledge graph embedding via dynamic mapping matrix. In ACL’2015 (pp. 687–696). Beijing: ACL.

    Google Scholar 

  • Manning, C. D., Raghavan, P., & Schütze, H. (2008b). Introduction to information retrieval. New York, NY, USA: Cambridge University Press.

    Book  Google Scholar 

  • Miller, G. A. (1995). Wordnet: A lexical database for english. Communications of the ACM, 38(11), 39–41.

    Article  Google Scholar 

  • Nickel, M., & Kiela, D. (2017). Poincaré embeddings for learning hierarchical representations. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan & R. Garnett (Eds.). Advances in Neural Information Processing Systems (Vol. 30, pp. 6338–6347). Curran Associates, Inc.

    Google Scholar 

  • Socher, R., Chen, D., Manning, C. D., & Ng, A. (2013). Reasoning with neural tensor networks for knowledge base completion. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.) Advances in Neural Information Processing Systems, 26, 926–934. Curran Associates, Inc.

    Google Scholar 

  • Speer, R., Chin, J., & Havasi, C. (2017). Conceptnet 5.5: An open multilingual graph of general knowledge. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4–9, 2017, San Francisco, CA, USA (pp. 4444–4451).

    Google Scholar 

  • Suchanek, F. M., Kasneci, G., & Weikum, G. (2007). Yago: A core of semantic knowledge. In WWW ’07 (pp 697–706). New York, NY, USA: ACM.

    Google Scholar 

  • Wang, Z., & Li, J. (2016). Text-enhanced representation learning for knowledge graph. IJCAI, 1293–1299.

    Google Scholar 

  • Wang, Z., Zhang, Feng, J., & Chen, Z. (2014a). Knowledge graph and text jointly embedding. In EMNLP, 1591–1601.

    Google Scholar 

  • Xiao, H., Huang, M., & Zhu, X. (2016). From one point to a manifold: Knowledge graph embedding for precise link prediction. IJCAI, 1315–1321.

    Google Scholar 

  • Xie, R., Liu, Z., Jia, J., Luan, H., & Sun, M. (2016). Representation learning of knowledge graphs with entity descriptions. AAAI, 2659–2665.

    Google Scholar 

  • Zhang, D., Yuan, B., Wang, D., & Liu, R. (2015). Joint semantic relevance learning with text data and graph knowledge. ACL-IJCNLP, 32–40.

    Google Scholar 

  • Zhong, H., Zhang, J., Wang, Z., Wan, H., & Chen, Z. (2015). Aligning knowledge and text embeddings by entity descriptions. EMNLP, 267–272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiansi Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dong, T. (2021). Geometric Connectionist Machines for Triple Classification. In: A Geometric Approach to the Unification of Symbolic Structures and Neural Networks. Studies in Computational Intelligence, vol 910. Springer, Cham. https://doi.org/10.1007/978-3-030-56275-5_7

Download citation

Publish with us

Policies and ethics