Skip to main content

Design for Additive Manufacturing

  • Chapter
  • First Online:
Additive Manufacturing Technologies

Abstract

The benefits and drawbacks of Additive Manufacturing Technologies enable designers to think beyond traditional design for manufacture and assembly constraints. AM has unique geometric, material, and customization benefits not provided by other production techniques. Likewise, AM has need for supports, typically produces anisotropic properties, and may require considerable post-processing. These and other benefits and drawbacks of AM have led to an increased emphasis on training designers to Design for Additive Manufacturing. In this chapter, we will revisit some of the concepts from prior chapters and introduce new concepts and ways of thinking to help designers take advantage of AM without falling into design pitfalls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Design for manufacturing is typically abbreviated DFM, whereas design for manufacture and assembly is typically abbreviated as DFMA. To avoid confusion with the abbreviation for design for additive manufacturing (DFAM) we have utilized the shorter abbreviation DFM to encompass both design for manufacture and design for assembly.

References

  1. Thompson, M. K., et al. (2016). Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals, 65(2), 737–760.

    Article  Google Scholar 

  2. Susman, G. I. (1992). Integrating design and manufacturing for competitive advantage. New York/Oxford: Oxford University Press.

    Google Scholar 

  3. Bralla, J. (1986). Handbook of product design for manufacturing: A practical guide to low-cost production. New York: McGraw-Hill.

    Google Scholar 

  4. Boothroyd, G., Dewhurst, P., & Knight, W. A. (2001). Product design for manufacture and assembly, revised and expanded. Boca Raton: CRC Press.

    Google Scholar 

  5. Shah, J. J., & Wright, P. K. (2000). Developing theoretical foundations of DFM. In ASME design technical conference.

    Google Scholar 

  6. Rosen, D. W., et al. (2003). The rapid tooling testbed: A distributed design-for-manufacturing system. Rapid Prototyping Journal, 9(3), 122–132.

    Article  Google Scholar 

  7. 3D Systems, Inc. (2020). http://www.3dsystems.com

  8. Hague, R. (2006). Unlocking the design potential of rapid manufacturing. In Rapid manufacturing: An industrial revolution for the digital age. Chichester: Wiley.

    Google Scholar 

  9. Mavroidis, C., et al. (2001). Fabrication of non-assembly mechanisms and robotic systems using rapid prototyping. Journal of Mechanical Design, 123(4), 516–524.

    Article  Google Scholar 

  10. Kataria, A., & Rosen, D. W. (2001). Building around inserts: Methods for fabricating complex devices in stereolithography. Rapid Prototyping Journal, 7(5), 253–262.

    Article  Google Scholar 

  11. Binnard, M. (2012). Design by composition for rapid prototyping (Vol. 525). Boston, MA: Springer Science & Business Media.

    Google Scholar 

  12. Patil, L., et al. (2000). Representation of heterogeneous objects in ISO 10303 (STEP). In ASME International Mechanical Engineering Congress and Exposition, Orlando.

    Google Scholar 

  13. Boeing Corp. (2020). http://www.boeing.com

  14. Ulrich, K. T., & Seering, W. P. (1990). Function sharing in mechanical design. Design Studies, 11(4), 223–234.

    Article  Google Scholar 

  15. Nera. (2020). https://bigrep.com/posts/deeper-look_into-the-fully-3d-printed-e-bike-nera/

  16. Gibson, L. J., & Ashby, M. F. (1999). Cellular solids: Structure and properties. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  17. Ashby, M., et al. (2001). Metal foams: A design guide. Applied Mechanics Reviews, 54, B105.

    Article  Google Scholar 

  18. Deshpande, V. S., Fleck, N. A., & Ashby, M. F. (2001). Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids, 49(8), 1747–1769.

    Article  MATH  Google Scholar 

  19. Wang, A.-J., & McDowell, D. (2003). Optimization of a metal honeycomb sandwich beam-bar subjected to torsion and bending. International Journal of Solids and Structures, 40(9), 2085–2099.

    Article  MATH  Google Scholar 

  20. Wang, J., et al. (2003). On the performance of truss panels with Kagome cores. International Journal of Solids and Structures, 40(25), 6981–6988.

    Article  Google Scholar 

  21. Nguyen, J., Park, S.-I., & Rosen, D. (2013). Heuristic optimization method for cellular structure design of light weight components. International Journal of Precision Engineering and Manufacturing, 14(6), 1071–1078.

    Article  Google Scholar 

  22. Lou, S., et al. (2019). Surface texture evaluation of additively manufactured metallic cellular scaffolds for acetabular implants using X-ray computed tomography. Bio-Design and Manufacturing, 2(2), 55–64.

    Article  Google Scholar 

  23. Zhang, A. P., et al. (2012). Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Advanced Materials, 24(31), 4266–4270.

    Article  Google Scholar 

  24. Rosen, D. W. (2007). Computer-aided design for additive manufacturing of cellular structures. Computer-Aided Design and Applications, 4(5), 585–594.

    Article  Google Scholar 

  25. Rose Petal dress. (2020). https://www.dezeen.com/2019/05/09/zac-posen-3d-printed-rose-dress-met-gala/

  26. Black panther. (2020). https://www.dezeen.com/2019/02/27/black-panther-best-costume-design-oscar-3d-printing/

  27. ASTM International. (2018). ISO/ASTM52910-18 Additive manufacturing — Design — Requirements, guidelines and recommendations. West Conshohocken: ASTM International.

    Google Scholar 

  28. ASTM International. (2019). ISO/ASTM52911-2-19 Additive manufacturing — Design — Part 2: Laser-based powder bed fusion of polymers. West Conshohocken: ASTM International.

    Google Scholar 

  29. ASTM International. (2019). ISO/ASTM52911-1-19 Additive manufacturing — Design — Part 1: Laser-based powder bed fusion of metals. West Conshohocken: ASTM International.

    Google Scholar 

  30. Wu, J.J., et al. (2018). 4D printing: History and recent progress. Chinese Journal of Polymer Science, 36(5), 563–575.

    Google Scholar 

  31. Tibbits, S., et al. (2014). 4D Printing and universal transformation. In Material agency. New York: Springer.

    Google Scholar 

  32. Yang, Z., et al. (2006). Thermal and UV shape shifting of surface topography. Journal of the American Chemical Society, 128(4), 1074–1075.

    Article  Google Scholar 

  33. Momeni, F., et al. (2017). A review of 4D printing. Materials & Design, 122, 42–79.

    Article  Google Scholar 

  34. Monzón, M., et al. (2017). 4D printing: Processability and measurement of recovery force in shape memory polymers. The International Journal of Advanced Manufacturing Technology, 89(5–8), 1827–1836.

    Article  Google Scholar 

  35. Jamal, M., et al. (2013). Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Advanced Healthcare Materials, 2(8), 1142–1150.

    Article  Google Scholar 

  36. Wu, J., et al. (2016). Multi-shape active composites by 3D printing of digital shape memory polymers. Scientific Reports, 6, 24224.

    Article  Google Scholar 

  37. Zhang, Q., Zhang, K., & Hu, G. (2016). Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Scientific Reports, 6, 22431.

    Article  Google Scholar 

  38. Gladman, A. S., et al. (2016). Biomimetic 4D printing. Nature Materials, 15(4), 413.

    Article  Google Scholar 

  39. Additive Manufacturing and 3D Printing Research Group, Nottingham University, UK. (2020). https://www.nottingham.ac.uk/research/groups/cfam/

  40. Beaman, J., et al. (2004). Assessment of European research and development in additive. In Subtractive manufacturing, final report from WTEC panel.

    Google Scholar 

  41. Kytannen, J. (2006). Rapid manufacture for the retail industry. In Rapid manufacturing: An industrial revolution for the digital age. Chichester: Wiley.

    Google Scholar 

  42. Ensz, M. T., Storti, D. W., & Ganter, M. A. (1998). Implicit methods for geometry creation. International Journal of Computational Geometry and Applications, 8(05n06), 509–536.

    Article  MathSciNet  MATH  Google Scholar 

  43. Shapiro, V., & Tsukanov, I. (1999). Meshfree simulation of deforming domains. Computer-Aided Design and Applications, 31(7), 459–471.

    Article  MATH  Google Scholar 

  44. Zeid, I. (2004). Mastering CAD/CAM with engineering subscription card. USA: McGraw-Hill.

    Google Scholar 

  45. Rvachev, V. L., et al. (2001). Transfinite interpolation over implicitly defined sets. Computer Aided Geometric Design, 18(3), 195–220.

    Article  MathSciNet  MATH  Google Scholar 

  46. ASTM International. (2016). ASTM E1325-16, Standard terminology relating to design of experiments. West Conshohocken: ASTM International.

    Google Scholar 

  47. ASTM International. (2017). ASTM E122-17, Standard practice for calculating sample size to estimate, with specified precision, the average for a characteristic of a lot or process. West Conshohocken: ASTM International.

    Google Scholar 

  48. Roy, R. K. (2010). A primer on the Taguchi method. USA (Michigan): Society of Manufacturing Engineers.

    Google Scholar 

  49. Wu, H. (2013). Application of orthogonal experimental design for the automatic software testing. In Applied mechanics and materials. Durnten-Zurich: Trans Tech Publications.

    Google Scholar 

  50. Michell, A. G. M. (1904). LVIII. The limits of economy of material in frame-structures. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 8(47), 589–597.

    Article  MATH  Google Scholar 

  51. Dewhurst, P., & Srithongchai, S. (2005). An investigation of minimum-weight dual-material symmetrically loaded wheels and torsion arms. Journal of Applied Mechanics, 72(2), 196–202.

    Article  MATH  Google Scholar 

  52. Baldick, R. (2006). Applied optimization: Formulation and algorithms for engineering systems. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  53. Xia, Q., Wang, M. Y., & Shi, T. (2013). A method for shape and topology optimization of truss-like structure. Structural and Multidisciplinary Optimization, 47(5), 687–697.

    Article  MathSciNet  MATH  Google Scholar 

  54. Patel, J., & Choi, S.-K. (2012). Classification approach for reliability-based topology optimization using probabilistic neural networks. Structural and Multidisciplinary Optimization, 45(4), 529–543.

    Article  MathSciNet  MATH  Google Scholar 

  55. Bendsoe, M. P. (1989). Optimal shape design as a material distribution problem. Structural Optimization, 1(4), 193–202.

    Article  Google Scholar 

  56. Sigmund, O. (2001). A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 21(2), 120–127.

    Article  Google Scholar 

  57. Wang, M. Y., Wang, X., & Guo, D. (2003). A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 192(1), 227–246.

    Article  MathSciNet  MATH  Google Scholar 

  58. Leary, M., et al. (2014). Optimal topology for additive manufacture: A method for enabling additive manufacture of support-free optimal structures. Materials & Design, 63, 678–690.

    Article  Google Scholar 

  59. Leary, M. (2019). Design for additive manufacturing. Amsterdam: Elsevier.

    Google Scholar 

  60. Langelaar, M. (2017). An additive manufacturing filter for topology optimization of print-ready designs. Structural and Multidisciplinary Optimization, 55(3), 871–883.

    Article  MathSciNet  Google Scholar 

  61. Allaire, G., et al. (2017). Structural optimization under overhang constraints imposed by additive manufacturing technologies. Journal of Computational Physics, 351, 295–328.

    Article  MathSciNet  MATH  Google Scholar 

  62. Xian, Y., & Rosen, D. W. (2020). Morphable components topology optimization for additive manufacturing. Structural and Multidisciplinary Optimization, 62, 19–39.

    Google Scholar 

  63. Wang, M. Y., & Wang, X. (2004). “Color” level sets: A multi-phase method for structural topology optimization with multiple materials. Computer Methods in Applied Mechanics and Engineering, 193(6–8), 469–496.

    Article  MathSciNet  MATH  Google Scholar 

  64. Giraldo-Londoño, O., et al. (2020). Multi-material thermomechanical topology optimization with applications to additive manufacturing: Design of main composite part and its support structure. Computer Methods in Applied Mechanics and Engineering, 363, 112812.

    Article  MathSciNet  MATH  Google Scholar 

  65. Generative design and topology optimization: In-depth look at the two latest design technologies. (2020). https://www.engineering.com/ResourceMain.aspx?resid=826

  66. Autodesk. (2020). https://www.autodesk.com/solutions/generative-design/manufacturing

  67. Oh, S., et al. (2019). Deep generative design: Integration of topology optimization and generative models. Journal of Mechanical Design, 141(11): paper 111405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gibson, I., Rosen, D., Stucker, B., Khorasani, M. (2021). Design for Additive Manufacturing. In: Additive Manufacturing Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-56127-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56127-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56126-0

  • Online ISBN: 978-3-030-56127-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics