Skip to main content

Management of Relapsed/Refractory Acute Myeloid Leukemia

  • Chapter
  • First Online:
Acute Leukemias

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 1067 Accesses

Abstract

Acute myeloid leukemia (AML) is an uncontrolled clonal proliferation of undifferentiated myeloid stem cells leading to an accumulation of immature myeloblasts. For over the past three decades, the gold standard induction therapy in AML consisted of a cytarabine and anthracycline-based chemotherapy regimen (e.g., “7+3”). However, relapse and refractory (R/R) disease remains an issue despite this long-standing therapy, with a median overall survival of less than 6 months. Various factors have been associated with worsening outcomes including age greater than 65 years, unfavorable cytogenetics, and a first complete remission duration of less than 12 months. Treatment of R/R AML is associated with low remission rates after first salvage therapy, further declining with subsequent lines of therapy. The only curative salvage option for R/R patients is hematopoietic stem cell transplant, but due to high risk of mortality, many patients are not eligible for this approach. With scientific advancements seen in recent years, new treatment modalities have been developed. In this chapter, we will review the novel treatment options that have demonstrated promising results, including targeted therapies (e.g., Fms-like tyrosine kinase 3, isocitrate dehydrogenase 1 and 2, BCL2 inhibitors), monoclonal antibodies (e.g., anti-CD33, anti-CD47, anti-CD123), and immunotherapies (e.g., PD-1, CTLA4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 2019;36:70–87.

    Article  PubMed  Google Scholar 

  2. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6:e441.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Oliva EN, Franek J, Patel D, Zaidi O, Nehme SA, Almeida AM. The real-world incidence of relapse in Acute Myeloid Leukemia (AML): a Systematic Literature Review (SLR). Blood. 2018;132:5188.

    Article  Google Scholar 

  4. Xu J, Lv T-T, Zhou X-F, Huang Y, Liu D-D, Yuan G-L. Efficacy of common salvage chemotherapy regimens in patients with refractory or relapsed acute myeloid leukemia: a retrospective cohort study. Medicine (Baltimore). 2018;97:e12102.

    Article  CAS  Google Scholar 

  5. Breems DA, Van Putten WL, Huijgens PC, et al. Prognostic index for adult patients with acute myeloid leukemia in first relapse. J Clin Oncol. 2005;23:1969–78.

    Article  PubMed  Google Scholar 

  6. Ramos NR, Mo CC, Karp JE, Hourigan CS. Current approaches in the treatment of relapsed and refractory acute myeloid leukemia. J Clin Med. 2015;4:665–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keating MJ, Kantarjian H, Smith TL, et al. Response to salvage therapy and survival after relapse in acute myelogenous leukemia. J Clin Oncol. 1989;7:1071–80.

    Article  CAS  PubMed  Google Scholar 

  8. Craddock C, Tauro S, Moss P, Grimwade D. Biology and management of relapsed acute myeloid leukaemia. Br J Haematol. 2005;129:18–34.

    Article  CAS  PubMed  Google Scholar 

  9. Ravandi F, Pierce SA, Garcia-Manero G, et al. Salvage therapy outcomes in a historical cohort of patients with relapsed or refractory acute myeloid leukemia. Blood. 2018;132:3985.

    Article  Google Scholar 

  10. Wolach O, Itchaki G, Bar-Natan M, et al. High-dose cytarabine as salvage therapy for relapsed or refractory acute myeloid leukemia—is more better or more of the same? Hematol Oncol. 2016;34:28–35.

    Article  CAS  PubMed  Google Scholar 

  11. Gandhi V, Estey E, Keating MJ, Plunkett W. Fludarabine potentiates metabolism of cytarabine in patients with acute myelogenous leukemia during therapy. J Clin Oncol. 1993;11:116–24.

    Article  CAS  PubMed  Google Scholar 

  12. Robak T. Purine nucleoside analogues in the treatment of myleoid leukemias. Leuk Lymphoma. 2003;44:391–409.

    Article  CAS  PubMed  Google Scholar 

  13. Parker JE, Pagliuca A, Mijovic A, et al. Fludarabine, cytarabine, G-CSF and idarubicin (FLAG-IDA) for the treatment of poor-risk myelodysplastic syndromes and acute myeloid leukaemia. Br J Haematol. 1997;99:939–44.

    Article  CAS  PubMed  Google Scholar 

  14. Price SL, Lancet JE, George TJ, et al. Salvage chemotherapy regimens for acute myeloid leukemia: is one better? Efficacy comparison between CLAG and MEC regimens. Leuk Res. 2011;35:301–4.

    Article  CAS  PubMed  Google Scholar 

  15. Montillo M, Mirto S, Petti MC, et al. Fludarabine, cytarabine, and G-CSF (FLAG) for the treatment of poor risk acute myeloid leukemia. Am J Hematol. 1998;58:105–9.

    Article  CAS  PubMed  Google Scholar 

  16. Wierzbowska A, Robak T, Pluta A, et al. Cladribine combined with high doses of arabinoside cytosine, mitoxantrone, and G-CSF (CLAG-M) is a highly effective salvage regimen in patients with refractory and relapsed acute myeloid leukemia of the poor risk: a final report of the Polish Adult Leukemia Group. Eur J Haematol. 2008;80:115–26.

    Article  CAS  PubMed  Google Scholar 

  17. Becker PS, Kantarjian HM, Appelbaum FR, et al. Clofarabine with high dose cytarabine and granulocyte colony-stimulating factor (G-CSF) priming for relapsed and refractory acute myeloid leukaemia. Br J Haematol. 2011;155:182–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scheckel CJ, Meyer M, Betcher JA, Al-Kali A, Foran J, Palmer J. Efficacy of mitoxantrone-based salvage therapies in relapsed or refractory acute myeloid leukemia in the Mayo Clinic Cancer Center: analysis of survival after ‘CLAG-M’ vs. ‘MEC’. Leuk Res. 2020;90:106300.

    Article  CAS  PubMed  Google Scholar 

  19. Cortes JE, Goldberg SL, Feldman EJ, et al. Phase II, multicenter, randomized trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer. 2015;121:234–42.

    Article  CAS  PubMed  Google Scholar 

  20. Ferrara F, Lessi F, Vitagliano O, Birkenghi E, Rossi G. Current therapeutic results and treatment options for older patients with relapsed acute myeloid leukemia. Cancers (Basel). 2019;11:224.

    Article  CAS  Google Scholar 

  21. Stahl M, DeVeaux M, Montesinos P, et al. Hypomethylating agents in relapsed and refractory AML: outcomes and their predictors in a large international patient cohort. Blood Adv. 2018;2:923–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ritchie EK, Feldman EJ, Christos PJ, et al. Decitabine in patients with newly diagnosed and relapsed acute myeloid leukemia. Leuk Lymphoma. 2013;54:2003–7.

    Article  CAS  PubMed  Google Scholar 

  23. Welch JS, Petti AA, Miller CA, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375:2023–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Daver N, Kantarjian HM, Roboz GJ, et al. Long term survival and clinical complete responses of various prognostic subgroups in 103 relapsed/refractory Acute Myeloid Leukemia (r/r AML) patients treated with guadecitabine (SGI-110) in phase 2 studies. Blood. 2016;128:904.

    Article  Google Scholar 

  25. Wisniewski K, Madry K, Grosicki S, et al. High activity of cladribine (2-CdA) combined with low-dose cytarabine in patients with acute myeloid leukemia or myelodysplastic syndrome after azacitidine failure. Blood. 2019;134:1360.

    Article  Google Scholar 

  26. Vigil C, Jahan N, Paun O, et al. Clofarabine and low-dose cytarabine combination in relapsed/refractory acute myeloid leukemia patients with high risk features. Clin Lymphoma Myeloma Leuk. 2017;17:S297.

    Article  Google Scholar 

  27. Jabbour E, Daver N, Champlin R, et al. Allogeneic stem cell transplantation as initial salvage for patients with acute myeloid leukemia refractory to high-dose cytarabine-based induction chemotherapy. Am J Hematol. 2014;89:395–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fathi A, Levis M. FLT3 inhibitors: a story of the old and the new. Curr Opin Hematol. 2011;18:71–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boddu P, Kantarjian H, Borthakur G, et al. Co-occurrence of FLT3-TKD and NPM1 mutations defines a highly favorable prognostic AML group. Blood Adv. 2017;1:1546–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. National Comprehensive Cancer Network. Acute myeloid leukemia. https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf (version 3.2020)

  31. Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33:299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Short NJ, Kantarjian H, Ravandi F, Daver N. Emerging treatment paradigms with FLT3 inhibitors in acute myeloid leukemia. Ther Adv Hematol. 2019;10:2040620719827310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perl AE, Martinelli G, Cortes JE, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med. 2019;381:1728–40.

    Article  CAS  PubMed  Google Scholar 

  34. Borthakur G, Kantarjian H, Ravandi F, et al. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica. 2011;96:62–8.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Xuan L, Fan Z, et al. [Sorafenib as salvage therapy in refractory relapsed acute myeloid leukemia with positive FLT3 mutation]. Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi. 2016;37:292–6

    Google Scholar 

  36. Bazarbachi A, Labopin M, Battipaglia G, et al. Sorafenib improves survival of FLT3-mutated acute myeloid leukemia in relapse after allogeneic stem cell transplantation: a report of the EBMT Acute Leukemia Working Party. Haematologica. 2019;104:e398–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ravandi F, Alattar ML, Grunwald MR, et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood. 2013;121:4655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ravandi F, Arana Yi C, Cortes JE, et al. Final report of phase II study of sorafenib, cytarabine and idarubicin for initial therapy in younger patients with acute myeloid leukemia. Leukemia. 2014;28:1543–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muppidi MR, Portwood S, Griffiths EA, et al. Decitabine and sorafenib therapy in FLT-3 ITD-mutant acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2015;15(Suppl):S73–9.

    Article  PubMed  Google Scholar 

  40. Röllig C, Serve H, Hüttmann A, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16:1691–9.

    Article  PubMed  CAS  Google Scholar 

  41. Cortes JE, Khaled S, Martinelli G, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019;20:984–97.

    Article  CAS  PubMed  Google Scholar 

  42. Swaminathan M, Kantarjian H, Daver N, et al. The combination of quizartinib with azacitidine or low dose cytarabine is highly active in patients (pts) with FLT3-ITD mutated myeloid leukemias: interim report of a phase I/II trial. Clin Lymphoma Myeloma Leuk. 2017;17:S3.

    Article  Google Scholar 

  43. Strati P, Kantarjian H, Ravandi F, et al. Phase I/II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. Am J Hematol. 2015;90:276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cortes JE, Kantarjian HM, Kadia TM, et al. Crenolanib besylate, a type I pan-FLT3 inhibitor, to demonstrate clinical activity in multiply relapsed FLT3-ITD and D835 AML. J Clin Oncol. 2016;34:7008.

    Article  Google Scholar 

  45. The Lancet Haematology. Closing in on targeted therapy for acute myeloid leukaemia. Lancet Haematol. 2019;6:e1.

    Article  CAS  PubMed  Google Scholar 

  46. Stone RM, Wang ES, Goldberg AD, et al. Crenolanib versus midostaurin combined with induction and consolidation chemotherapy in newly diagnosed FLT3 mutated AML. J Clin Oncol. 2019;37:TPS7068-TPS.

    Article  Google Scholar 

  47. Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483:474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abbas S, Lugthart S, Kavelaars FG, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. 2010;116:2122–6.

    Article  CAS  PubMed  Google Scholar 

  50. DiNardo CD, Ravandi F, Agresta S, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015;90:732–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Green CL, Evans CM, Zhao L, et al. The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood. 2011;118:409–12.

    Article  CAS  PubMed  Google Scholar 

  52. Im AP, Sehgal AR, Carroll MP, et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia. 2014;28:1774–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reitman ZJ, Yan H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst. 2010;102:932–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130:722–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fathi AT, DiNardo CD, Kline I, et al. Differentiation syndrome associated with enasidenib, a selective inhibitor of mutant isocitrate dehydrogenase 2: analysis of a phase 1/2 study. JAMA Oncol. 2018;4:1106–10.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tallman MS, Knight RD, Glasmacher AG, Dohner H, Group obotISI. Phase III randomized, open-label study comparing the efficacy and safety of AG-221 vs conventional care regimens (CCR) in older patients with advanced acute myeloid leukemia (AML) with isocitrate dehydrogenase (IDH)-2 mutations in relapse or refractory to multiple prior treatments: the IDHENTIFY trial. J Clin Oncol. 2016;34:TPS7074-TPS.

    Article  Google Scholar 

  57. DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378:2386–98.

    Article  CAS  PubMed  Google Scholar 

  58. Watts JM, Baer MR, Lee S, et al. A phase 1 dose escalation study of the IDH1m inhibitor, FT-2102, in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). J Clin Oncol. 2018;36:7009.

    Article  Google Scholar 

  59. Konteatis Z, Artin E, Nicolay B, et al. Vorasidenib (AG-881): a first-in-class, brain-penetrant dual inhibitor of mutant IDH1 and 2 for treatment of glioma. ACS Med Chem Lett. 2020;11:101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gibson CJ, Davids MS. BCL-2 antagonism to target the intrinsic mitochondrial pathway of apoptosis. Clin Cancer Res. 2015;21:5021–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Campos EV, Pinto R. Targeted therapy with a selective BCL-2 inhibitor in older patients with acute myeloid leukemia. Hematol Transfus Cell Ther. 2019;41:169–77.

    Article  PubMed  Google Scholar 

  62. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jain N, Keating M, Thompson P, et al. Ibrutinib and venetoclax for first-line treatment of CLL. N Engl J Med. 2019;380:2095–103.

    Article  CAS  PubMed  Google Scholar 

  64. Tam CS, Anderson MA, Pott C, et al. Ibrutinib plus venetoclax for the treatment of mantle-cell lymphoma. N Engl J Med. 2018;378:1211–23.

    Article  CAS  PubMed  Google Scholar 

  65. Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6:1106–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gaut D, Burkenroad A, Duong T, Feammelli J, Sasine J, Schiller GJ. Off-label use of venetoclax combination therapy in relapsed/refractory acute myeloid leukemia: a single institution experience. Blood. 2019;134:5133.

    Article  Google Scholar 

  67. Aldoss I, Yang D, Aribi A, et al. Efficacy of the combination of venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia. Haematologica. 2018;103:e404–7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Teague RM, Kline J. Immune evasion in acute myeloid leukemia: current concepts and future directions. J Immunother Cancer. 2013;1:13.

    Article  PubMed Central  Google Scholar 

  69. Weiner GJ. Monoclonal antibody mechanisms of action in cancer. Immunol Res. 2007;39:271–8.

    Article  CAS  PubMed  Google Scholar 

  70. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sehgal A, Whiteside TL, Boyiadzis M. Programmed death-1 checkpoint blockade in acute myeloid leukemia. Expert Opin Biol Ther. 2015;15:1191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378:2078–92.

    Article  CAS  PubMed  Google Scholar 

  73. Schmid P, Cortes J, Pusztai L, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382:810–21.

    Article  CAS  PubMed  Google Scholar 

  74. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381:1535–46.

    Article  CAS  PubMed  Google Scholar 

  75. Davids MS, Kim HT, Bachireddy P, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375:143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Daver N, Basu S, Garcia-Manero G, et al. Phase IB/II study of nivolumab in combination with azacytidine (AZjA) in patients (pts) with relapsed Acute Myeloid Leukemia (AML). Blood. 2016;128:763.

    Article  Google Scholar 

  77. Daver N, Garcia-Manero G, Basu S, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. Cancer Discov. 2019;9:370–83.

    Article  CAS  PubMed  Google Scholar 

  78. Pierelli L, Teofili L, Menichella G, et al. Further investigations on the expression of HLA-DR, CD33 and CD13 surface antigens in purified bone marrow and peripheral blood CD34+ haematopoietic progenitor cells. Br J Haematol. 1993;84:24–30.

    Article  CAS  PubMed  Google Scholar 

  79. Selby C, Yacko LR, Glode AE. Gemtuzumab Ozogamicin: Back Again. J Adv Pract Oncol. 2019;10:68–82.

    PubMed  PubMed Central  Google Scholar 

  80. Baron J, Wang ES. Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Rev Clin Pharmacol. 2018;11:549–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Petersdorf SH, Kopecky KJ, Slovak M, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121:4854–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19:3244–54.

    Article  CAS  PubMed  Google Scholar 

  83. Fostvedt LK, Hibma JE, Masters JC, Vandendries E, Ruiz-Garcia A. Pharmacokinetic/pharmacodynamic modeling to support the re-approval of gemtuzumab ozogamicin. Clin Pharmacol Ther. 2019;106:1006–17.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Taksin AL, Legrand O, Raffoux E, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia. 2007;21:66–71.

    Article  CAS  PubMed  Google Scholar 

  85. Burnett AK, Hills RK, Milligan D, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011;29:369–77.

    Article  CAS  PubMed  Google Scholar 

  86. Hills RK, Castaigne S, Appelbaum FR, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15:986–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Harrington KH, Gudgeon CJ, Laszlo GS, et al. The broad anti-AML activity of the CD33/CD3 BiTE antibody construct, AMG 330, is impacted by disease stage and risk. PLoS One. 2015;10:e0135945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Krupka C, Kufer P, Kischel R, et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood. 2014;123:356–65.

    Article  CAS  PubMed  Google Scholar 

  89. Friedrich M, Henn A, Raum T, et al. Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia. Mol Cancer Ther. 2014;13:1549–57.

    Article  CAS  PubMed  Google Scholar 

  90. Laszlo GS, Gudgeon CJ, Harrington KH, et al. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood. 2014;123:554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ravandi F, Stein AS, Kantarjian HM, et al. A phase 1 first-in-human study of AMG 330, an anti-CD33 bispecific T-cell engager (BiTE®) antibody construct, in relapsed/refractory Acute Myeloid Leukemia (R/R AML). Blood. 2018;132:25.

    Article  Google Scholar 

  92. Krupka C, Kufer P, Kischel R, et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia. 2016;30:484–91.

    Article  CAS  PubMed  Google Scholar 

  93. Subklewe M, Stein A, Walter RB, et al. Preliminary results from a phase 1 first-in-human study of AMG 673, a novel Half-Life Extended (HLE) anti-CD33/CD3 BiTE® (bispecific T-cell engager) in patients with relapsed/refractory (R/R) Acute Myeloid Leukemia (AML). Blood. 2019;134:833.

    Article  Google Scholar 

  94. Zeidan AM, DeAngelo DJ, Palmer JM, et al. A phase I study of CC-90002, a monoclonal antibody targeting CD47, in patients with relapsed and/or refractory (R/R) Acute Myeloid Leukemia (AML) and high-risk myelodysplastic syndromes (MDS): final results. Blood. 2019;134:1320.

    Article  Google Scholar 

  95. Chao MP, Takimoto CH, Feng DD, et al. Therapeutic targeting of the macrophage immune checkpoint CD47 in myeloid malignancies. Front Oncol. 2020;9:1380.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sallman DA, Donnellan WB, Asch AS, et al. The first-in-class anti-CD47 antibody Hu5F9-G4 is active and well tolerated alone or with azacitidine in AML and MDS patients: initial phase 1b results. J Clin Oncol. 2019;37:7009.

    Article  Google Scholar 

  97. Gaudet F, Nemeth JF, McDaid R, et al. Development of a CD123xCD3 bispecific antibody (JNJ-63709178) for the treatment of Acute Myeloid Leukemia (AML). Blood. 2016;128:2824.

    Article  Google Scholar 

  98. Al-Hussaini M, Rettig MP, Ritchey JK, et al. Targeting CD123 in acute myeloid leukemia using a T-cell–directed dual-affinity retargeting platform. Blood. 2016;127:122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Uy G, Stewart S, Baughman J, et al. A Phase I trial of MGD006 in patients with relapsed acute myeloid leukemia (AML). J Immunother Cancer. 2014;2:87.

    Article  Google Scholar 

  100. Pemmaraju N, Lane AA, Sweet KL, et al. Tagraxofusp in blastic plasmacytoid dendritic-cell neoplasm. N Engl J Med. 2019;380:1628–37.

    Article  CAS  PubMed  Google Scholar 

  101. Hammond D, Pemmaraju N. Tagraxofusp for blastic plasmacytoid dendritic cell neoplasm. Hematol Oncol Clin North Am. 2020;34:565.

    Article  PubMed  Google Scholar 

  102. Sweet KL, Pemmaraju N, Lane AA, et al. Lead-in stage results of a pivotal trial of SL-401, an interleukin-3 receptor (IL-3R) targeting biologic, in patients with Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN) or Acute Myeloid Leukemia (AML). Blood. 2015;126:3795.

    Article  Google Scholar 

  103. Kovtun Y, Jones GE, Adams S, et al. A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Adv. 2018;2:848–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Daver NG, Montesinos P, DeAngelo DJ, et al. Clinical profile of IMGN632, a novel CD123-targeting Antibody-Drug Conjugate (ADC), in patients with relapsed/refractory (R/R) Acute Myeloid Leukemia (AML) or Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN). Blood. 2019;134:734.

    Article  Google Scholar 

  105. Schürch CM. Therapeutic antibodies for myeloid neoplasms-current developments and future directions. Front Oncol. 2018;8:152.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Silence K, Dreier T, Moshir M, et al. ARGX-110, a highly potent antibody targeting CD70, eliminates tumors via both enhanced ADCC and immune checkpoint blockade. mAbs. 2014;6:523–32.

    Article  PubMed  Google Scholar 

  107. Aftimos P, Rolfo C, Rottey S, et al. Phase I dose-escalation study of the anti-CD70 antibody ARGX-110 in advanced malignancies. Clin Cancer Res. 2017;23:6411–20.

    Article  CAS  PubMed  Google Scholar 

  108. Ochsenbein A et al. Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in humans. 07 Dec 2019. Oral Abstract #234. In 61st ASH annual meeting & exposition, Orlando, US.

    Google Scholar 

  109. Riether C, Chiorazzo T, Johnson AJ, et al. The combination of the BCL-2 antagonist venetoclax with the CD70-targeting antibody cusatuzumab synergistically eliminates primary human leukemia stem cells. Blood. 2019;134:3918.

    Article  Google Scholar 

  110. Bouaoun L, Sonkin D, Ardin M, et al. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum Mutat. 2016;37:865–76.

    Article  CAS  PubMed  Google Scholar 

  111. Zatloukalova P, Galoczova M, Vojtesek B. Prima-1 and APR-246 in cancer therapy. Klin Onkol. 2018;31:71–6.

    PubMed  Google Scholar 

  112. Wassman CD, Baronio R, Demir O, et al. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nat Commun. 2013;4:1407.

    Article  PubMed  CAS  Google Scholar 

  113. Perdrix A, Najem A, Saussez S, et al. PRIMA-1 and PRIMA-1(Met) (APR-246): from mutant/wild type p53 reactivation to unexpected mechanisms underlying their potent anti-tumor effect in combinatorial therapies. Cancers (Basel). 2017;9:172.

    Article  CAS  Google Scholar 

  114. Lambert JM, Gorzov P, Veprintsev DB, et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell. 2009;15:376–88.

    Article  CAS  PubMed  Google Scholar 

  115. Deneberg S, Cherif H, Lazarevic V, et al. An open-label phase I dose-finding study of APR-246 in hematological malignancies. Blood Cancer J. 2016;6:e447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sallman D, Dezern A, Sweet K, et al. Phase 1B/2 combination study of APR-246 and azacitidine (AZA) in patients with TP53 mutant myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Abstract #S1558. Presented at the 23rd congress of the European Hematology Association, June 17, 2018; Stockholm, Sweden.

    Google Scholar 

  117. Sallman DA, DeZern AE, Garcia-Manero G, et al. Phase 2 results of APR-246 and azacitidine (AZA) in patients with TP53 mutant Myelodysplastic Syndromes (MDS) and oligoblastic Acute Myeloid Leukemia (AML). Blood. 2019;134:676.

    Article  Google Scholar 

  118. Cluzeau T, Sebert M, Rahmé R, et al. APR-246 combined with azacitidine (AZA) in TP53 Mutated Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML). a phase 2 study by the Groupe Francophone Des Myélodysplasies (GFM). Blood. 2019;134:677.

    Article  Google Scholar 

  119. Kojima K, Konopleva M, Samudio IJ, et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood. 2005;106:3150–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Martinelli G, Pappayannidis C, Yee K, et al. Phase 1b results of idasanutlin+ cytarabine (Ara-C) in acute myeloid leukemia (AML) patients (pts). Haematologica. 2016;101:S504.

    Google Scholar 

  121. Daver NG, Pollyea DA, Garcia JS, et al. Safety, efficacy, pharmacokinetic (PK) and biomarker analyses of BCL2 inhibitor venetoclax (Ven) plus MDM2 inhibitor idasanutlin (idasa) in patients (pts) with relapsed or refractory (R/R) AML: a phase Ib, non-randomized, open-label study. Blood. 2018;132:767.

    Article  Google Scholar 

  122. DiNardo CD, Rosenthal J, Andreeff M, et al. Phase 1 dose escalation study of MDM2 inhibitor DS-3032b in patients with hematological malignancies – preliminary results. Blood. 2016;128:593.

    Article  Google Scholar 

  123. Cummins KD, Gill S. Chimeric antigen receptor T-cell therapy for acute myeloid leukemia: how close to reality? Haematologica. 2019;104:1302–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang Q-s, Wang Y, Lv H-y, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther. 2015;23:184–91.

    Article  CAS  PubMed  Google Scholar 

  125. Tasian SK, Kenderian SS, Shen F, et al. Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood. 2017;129:2395–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pizzitola I, Anjos-Afonso F, Rouault-Pierre K, et al. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia. 2014;28:1596–605.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang J, Gu Y, Chen B. Mechanisms of drug resistance in acute myeloid leukemia. Onco Targets Ther. 2019;12:1937–45.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Jabbour E, Garcia-Manero G, Cortes J, et al. Twice-daily fludarabine and cytarabine combination with or without gentuzumab ozogamicin is effective in patients with relapsed/refractory acute myeloid leukemia, high-risk myelodysplastic syndrome, and blast-phase chronic myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2012;12:244–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Jabbour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jammal, N., Chew, S., Ravandi, F., Kantarjian, H.M., Jabbour, E. (2021). Management of Relapsed/Refractory Acute Myeloid Leukemia. In: Faderl, S.H., Kantarjian, H.M., Estey, E. (eds) Acute Leukemias. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-53633-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53633-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53632-9

  • Online ISBN: 978-3-030-53633-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics