Skip to main content

A Predictive Process Design Kit for Three-Independent-Gate Field-Effect Transistors

  • Conference paper
  • First Online:
VLSI-SoC: New Technology Enabler (VLSI-SoC 2019)

Abstract

The Three-Independent-Gate Field-Effect Transistor (TIGFET) is a promising beyond-CMOS technology which offers multiple modes of operation enabling unique capabilities such as the dynamic control of the device polarity and dual-threshold voltage characteristics. These operations can be used to reduce the number of transistors required for logic implementation resulting in compact logic designs and reductions in chip area and leakage current.

However, the evaluation of TIGFET-based design currently relies on a close approximation for the Power, Performance, and Area (PPA) rather than traditional layout-based methods. To allow for a systematic evaluation of the design area, we present here a publicly available Predictive Process Design Kit (PDK) for a 10 nm-diameter silicon-nanowire TIGFET device. This work consists of a SPICE model and full custom physical design files including a Design Rule Manual, a Design Rule Check, and Layout Versus Schematic decks for Calibre®. We validate the design rules through the implementation of basic logic gates and a full-adder and compare extracted metrics with the FreePDK15nmTM PDK. We show 26% and 41% area reduction in the case of an XOR gate and a 1-bit full-adder design respectively. Applications for this PDK with respect to hardware security benefits are supported through a differential power analysis study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui, Y., et al.: High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149–152 (2003)

    Article  MathSciNet  Google Scholar 

  2. Colinge, J.P.: FinFET and Other Multigate Transistors, 1st edn. Springer, Cham (2007). https://doi.org/10.1007/978-0-387-71752-4

    Book  Google Scholar 

  3. Sutar, S., et al.: Graphene p-n junctions for electron-optics devices. In: IEEE DRC (2013)

    Google Scholar 

  4. De Marchi, M., et al.: Polarity control in double-gate, gate-all-around vertically stacked silicon nanowire FETs. In: IEDM Tech. Dig., vol. 8, no. 4, pp. 1–4 (2012)

    Google Scholar 

  5. Heinzig, A., et al.: Reconfigurable silicon nanowire transistors. Nano Lett. 12(1), 119–124 (2011)

    Article  Google Scholar 

  6. Rai, S., et al.: Emerging reconfigurable nanotechnologies: can they support future electronics?. In: Proceedings of ICCAD, p. 13 (2018)

    Google Scholar 

  7. Romero-González, J., et al.: BCB evaluation of high-performance and low-leakage three-independent-gate field-effect transistors. IEEE JXCDC 4(1), 35–43 (2018)

    Google Scholar 

  8. Trommer, J., et al.: Reconfigurable nanowire transistors with multiple independent gates for efficient and programmable combinational circuits. In: DATE, pp. 169–174 (2016)

    Google Scholar 

  9. Mathew, L., et al.: Multiple independent gate field effect transistor (MIGFET) – multi-fin RF mixer architecture, three independent gates (MIGFET-T) operation and temperature characteristics. VLSI Technology (2005)

    Google Scholar 

  10. Rai, S., et al.: Designing efficient circuits based on runtime-reconfigurable field-effect transistors. IEEE TVLSI 27(3), 560–572 (2019)

    MathSciNet  Google Scholar 

  11. Ben-Jamaa, M.H., et al.: An efficient gate library for ambipolar CNTFET logic. IEEE TCAS 30(2), 242–255 (2011)

    Google Scholar 

  12. Gaillardon, P.-E., et al.: Three-independent-gate transistors: opportunities in digital, analog and RF applications. In: LATS (2016)

    Google Scholar 

  13. Rostami, M., et al.: Novel dual-Vth independent-gate FinFET circuits. In: ASPDAC (2010)

    Google Scholar 

  14. Zhang, J., et al.: Configurable circuits featuring dual-threshold-voltage design with three-independent-gate silicon nanowire FETs. IEEE TCAS I 61(10), 2851–2861 (2014)

    Google Scholar 

  15. Giacomin, E., et al.: Low-power multiplexer designs using three-independent-gate field effect transistors. In: NanoArch (2017)

    Google Scholar 

  16. Romero-Gonzalez, J., et al.: An efficient adder architecture with three-independent-gate field-effect transistors. In: IEEE ICRC (2018)

    Google Scholar 

  17. Tang, X., et al.: TSPC flip-flop circuit design with three-independent-gate silicon nanowire FETs. IEEE ISCAS (2014)

    Google Scholar 

  18. Giacomin, E., et al.: Differential power analysis mitigation technique using three-independent-gate field effect transistors. VLSI-SoC (2018)

    Google Scholar 

  19. A 10-nm TIGFET PDK (2019). https://github.com/LNIS-Projects/TIGFET-10nm-PDK

  20. Bhanushali, K., et al.: FreePDK15: an open-source predictive process design kit for 15nm FinFET technology. IEEE ISPD (2015)

    Google Scholar 

  21. Zhang, J., et al.: A schottky-barrier silicon FinFET with 6.0 mV/dec subthreshold slope over 5 decades of current. IEDM Tech. Dig., pp. 339–342 (2014)

    Google Scholar 

  22. Resta, G.V., et al.: Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano 12, 7039–7047 (2018)

    Article  Google Scholar 

  23. Zhang, J., et al.: Polarity-controllable silicon nanowire transistors with dual threshold voltages. IEEE TED 61(11), 3654–3660 (2014)

    Article  Google Scholar 

  24. Stine, J.E., et al.: FreePDK: an open-source variation- aware design kit. In: IMSE (2007)

    Google Scholar 

  25. Martins, M., et al.: Open cell library in 15nm FreePDK technology. IEEE ISPD (2015)

    Google Scholar 

  26. Clark, L.T., et al.: ASAP7: a 7-nm FinFET predictive process design kit. Microelectron. J. 53, 105–115 (2016)

    Article  Google Scholar 

  27. Giacomin, E., et al.: A resistive random access memory addon for the NCSU FreePDK 45nm. IEEE TNANO 18(1), 68–72 (2018)

    Google Scholar 

  28. Cadareanu, P., et al.: Nanoscale three-independent-gate transistors: geometric TCAD Simulations at the 10nm-Node. In: IEEE NMDC (2019)

    Google Scholar 

  29. Finders, J., et al.: Double patterning lithography: the bridge between low k1 ArF and EUV. Microlithogr. World 17(1), 2 (2008)

    Google Scholar 

  30. Yuan, K., et al.: Double patterning layout decomposition for simultaneous conflict and stitch minimization. IEEE TCAD 29(2), 185–196 (2010)

    Google Scholar 

  31. Pan, D.Z., et al.: Layout optimizations for double patterning lithography. In: ASICON (2009)

    Google Scholar 

  32. Kahng, A.B. et al.: Layout decomposition for double patterning lithography. In: ICCAD (2008)

    Google Scholar 

  33. Ryckaert, J., et al.: DTCO at N7 and beyond: patterning and electrical compromises and opportunities. In: Proceedings of SPIE, vol. 9427 (2015)

    Google Scholar 

  34. Zografos, O., et al.: Novel grid-based power routing scheme for regular controllable-polarity FET arrangements. In: IEEE ISCAS (2014)

    Google Scholar 

  35. Bobba, S., et al.: Process/design co-optimization of regular logic tiles for double-gate silicon nanowire transistors. In: NanoArch (2012)

    Google Scholar 

  36. Gore, G., et al.: A predictive process design kit for three-independent-gate field-effect transistors. In: VLSI-SoC (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF Career Award number 1751064, and the SRC Contract 2018-IN-2834.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patsy Cadareanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cadareanu, P., Gore, G., Giacomin, E., Gaillardon, PE. (2020). A Predictive Process Design Kit for Three-Independent-Gate Field-Effect Transistors. In: Metzler, C., Gaillardon, PE., De Micheli, G., Silva-Cardenas, C., Reis, R. (eds) VLSI-SoC: New Technology Enabler. VLSI-SoC 2019. IFIP Advances in Information and Communication Technology, vol 586. Springer, Cham. https://doi.org/10.1007/978-3-030-53273-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53273-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53272-7

  • Online ISBN: 978-3-030-53273-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics