Skip to main content

Voluminis: An Augmented Reality Mobile System in Geometry Affording Competence to Evaluating Math Comprehension

  • Conference paper
  • First Online:
Cross Reality and Data Science in Engineering (REV 2020)

Abstract

The spatial competence for learning three-dimensional objects in the geometry course makes Augmented Reality a perfect ally, due to its popularity among children allowing them to experience more realistic learning. Also, the use of augmented reality allows to improve the interactive and spatial skills with three-dimensional objects. A mobile interactive augmented reality system with 3D models was developed for the teaching of geometry, allowing the teacher to obtain real-time results of the student’s spatial and mathematical competence in a real-world environment. In the mobile system, a playful environment capable of visualizing geometric figures (Cube, Rectangular Prism, Triangular Prism, Pyramid, Cone, Cylinder and Sphere), and formulas to calculate its volume are proposed. After learning the formulas, the student must continue with the game and obtain the highest score without visualizing the formulas in such a way that in a competitive environment they can experience more realistic and beneficial learning to improve their spatial competence. The students evaluated are in the primary level (sixth grade) of two classrooms in the city of Arequipa, Peru, enrolled in a one-week course (4 h a week) entitled “Mathematical Logic”, and divided into a experimental group (they used Voluminis) and a control group (traditional methodology). A performance test (post-test) and a satisfaction questionnaire were used. In addition, a pre-test to both groups to determine the same level of knowledge about spatial geometry. The results revealed a positive impact on performance, greater academic motivation of students and above all increased competition among students in the Voluminis game. Thanks to the results in real time the professor observed the learning difficulties of the students and obtained the immediate qualifications of the space competition. Voluminis can be part of the qualified evaluation of the course, because it provides the evolution of each student in the area of geometry. It also helps to strengthen space skills thanks to the competition activities that occur in the game.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://pisa.e-wd.org/.

  2. 2.

    https://developers.google.com/ar.

  3. 3.

    https://unity.com/.

  4. 4.

    https://firebase.google.com/.

References

  1. Abu Bakar, J.A., Gopalan, V., Zulkifli, A.N., Alwi, A.: Design and development of mobile augmented reality for physics experiment. In: Abdullah, N., Wan Adnan, W.A., Foth, M. (eds.) User Science and Engineering, pp. 47–58. Springer, Singapore (2018)

    Chapter  Google Scholar 

  2. Avila-Pesantez, D.F., Vaca-Cardenas, L.A., Delgadillo Avila, R., Padilla Padilla, N., Rivera, L.A.: Design of an augmented reality serious game for children with dyscalculia: a case study. In: Botto-Tobar, M., Pizarro, G., Zúñiga-Prieto, M., D’Armas, M., Zúñiga Sánchez, M. (eds.) Technology Trends, pp. 165–175. Springer, Cham (2019)

    Chapter  Google Scholar 

  3. Ayer, S.K., Messner, J.I., Anumba, C.J.: Augmented reality gaming in sustainable design education. J. Archit. Eng. 22(1), 04015012 (2016). https://doi.org/10.1061/(asce)ae.1943-5568.0000195

    Article  Google Scholar 

  4. Garzón, J., Pavón, J., Baldiris, S.: Systematic review and meta-analysis of augmented reality in educational settings. Virtual Reality 23(4), 447–459 (2019). https://doi.org/10.1007/s10055-019-00379-9

    Article  Google Scholar 

  5. Hsiao, H.S., Chang, C.S., Lin, C.Y., Wang, Y.Z.: Weather observers: a manipulative augmented reality system for weather simulations at home, in the classroom, and at a museum. Interact. Learn. Environ. 24(1), 205–223 (2013). https://doi.org/10.1080/10494820.2013.834829

    Article  Google Scholar 

  6. Jung, M., Conderman, G.: Early geometry instruction for young children. Kappa Delta Pi Rec. 53(3), 126–130 (2017). https://doi.org/10.1080/00228958.2017.1334478

    Article  Google Scholar 

  7. Martín-Gutiérrez, J., Saorín, J.L., Contero, M., Alcañiz, M., Pérez-López, D.C., Ortega, M.: Design and validation of an augmented book for spatial abilities development in engineering students. Comput. Graph. 34(1), 77–91 (2010). https://doi.org/10.1016/j.cag.2009.11.003

    Article  Google Scholar 

  8. Muhamad Nazri, N.I.A., Awang Rambli, D.R., Irshad, S.: Exploratory study on multimodal information presentation for mobile AR application. In: Abdullah, N., Wan Adnan, W.A., Foth, M. (eds.) User Science and Engineering, pp. 358–369. Springer, Singapore (2018)

    Google Scholar 

  9. Platonov, J., Heibel, H., Meier, P., Grollmann, B.: A mobile markerless AR system for maintenance and repair. In: 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality. IEEE, October 2006. https://doi.org/10.1109/ismar.2006.297800

  10. Radu, I., Doherty, E., DiQuollo, K., McCarthy, B., Tiu, M.: Cyberchase shape quest: pushing geometry education boundaries with augmented reality. In: Proceedings of the 14th International Conference on Interaction Design and Children, IDC 2015, pp. 430–433. ACM, New York (2015). http://doi.acm.org/10.1145/2771839.2771871

  11. Ranade, S., Zhang, M., Al-Sada, M., Urbani, J., Nakajima, T.: Clash tanks: an investigation of virtual and augmented reality gaming experience. In: 2017 Tenth International Conference on Mobile Computing and Ubiquitous Network (ICMU). IEEE, October 2017. https://doi.org/10.23919/icmu.2017.8330112

  12. Satpute, T., Pingale, S., Chavan, V.: Augmented reality in e-learning review of prototype designs for usability evaluation. In: 2015 International Conference on Communication, Information & Computing Technology (ICCICT). IEEE, January 2015. https://doi.org/10.1109/iccict.2015.7045712

  13. Tezer, M.: The effect of answer based computer assisted geometry course on students success level and attitudes. Qual. Quant. 52(5), 2321–2329 (2017). https://doi.org/10.1007/s11135-017-0666-5

    Article  Google Scholar 

  14. Tobar-Munoz, H., Fabregat, R., Baldiris, S.: Using a videogame with augmented reality for an inclusive logical skills learning session. In: 2014 International Symposium on Computers in Education (SIIE). IEEE, November 2014. https://doi.org/10.1109/siie.2014.7017728

  15. Toukoumidis, A.: Gamificación en Iberoameérica: experiencias desde la comunicación y la educación. Abya Yala Cuenca, Ecuador Universidad Politécnica Salesiana, Quito, Ecuador (2018)

    Google Scholar 

  16. Wei, X., Weng, D., Liu, Y., Wang, Y.: Teaching based on augmented reality for a technical creative design course. Comput. Educ. 81, 221–234 (2015). https://doi.org/10.1016/j.compedu.2014.10.017

    Article  Google Scholar 

  17. Zhenming, B., Mayu, U., Mamoru, E., Tatami, Y.: Development of an English words learning system utilizes 3D markers with augmented reality technology. In: 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE). IEEE, October 2017. https://doi.org/10.1109/gcce.2017.8229353

Download references

Acknowledgements

Thanks to the “Research Center, Transfer of Technologies and Software Development R + D + i” - CiTeSoft EC-0003-2017-UNSA, for their collaboration in the use their equipment and facilities, for the development of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Deyby Carlos-Chullo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carlos-Chullo, J.D., Vilca-Quispe, M., Castro-Gutierrez, E. (2021). Voluminis: An Augmented Reality Mobile System in Geometry Affording Competence to Evaluating Math Comprehension. In: Auer, M., May, D. (eds) Cross Reality and Data Science in Engineering. REV 2020. Advances in Intelligent Systems and Computing, vol 1231. Springer, Cham. https://doi.org/10.1007/978-3-030-52575-0_23

Download citation

Publish with us

Policies and ethics