Skip to main content

Skeletal Disease

  • Chapter
  • First Online:
  • 1152 Accesses

Abstract

Skeletal complaints are seen commonly in pediatric primary care, most of which do not represent endocrine disease. Endocrine-mediated skeletal disease is thankfully rare; however, pediatricians should be aware that low bone mineral density and fracture secondary to chronic medical conditions are both on the rise due to longer survival and enhanced treatment options for chronically ill children. Here, we review key elements of the history, physical examination, and basic laboratory evaluation to guide a general pediatrician in the initial evaluation of skeletal health until a child can be evaluated by a pediatric endocrinologist.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BMD:

Bone mineral density

DXA:

Dual-energy X-ray absorptiometry

OI:

Osteogenesis imperfecta

PTH:

Parathyroid hormone

SHOX:

Short stature homeobox-containing gene

References

  1. Lifshitz F. Pediatric endocrinology. 5th ed. New York: Informa Healthcare; 2007.

    Google Scholar 

  2. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl 3):S131–9.

    Article  CAS  Google Scholar 

  3. Hilton CMKMJ. Endochondral ossification. In: Primer on the metabolic bone diseases and disorders of mineral metabolism. Wiley, Hoboken, New Jersey. p. 12–9.

    Google Scholar 

  4. Danseco ER, Miller TR, Spicer RS. Incidence and costs of 1987-1994 childhood injuries: demographic breakdowns. Pediatrics. 2000;105(2):E27.

    Article  CAS  Google Scholar 

  5. Weber DR, Boyce A, Gordon C, Hogler W, Kecskemethy HH, Misra M, et al. The utility of DXA assessment at the forearm, proximal femur, and lateral distal femur, and vertebral fracture assessment in the pediatric population: 2019 ISCD official position. J Clin Densitom. 2019;22(4):567–89.

    Article  Google Scholar 

  6. Wheeler BJ, Snoddy AME, Munns C, Simm P, Siafarikas A, Jefferies C. A brief history of nutritional rickets. Front Endocrinol (Lausanne). 2019;10:795.

    Article  Google Scholar 

  7. Carpenter TO, Shaw NJ, Portale AA, Ward LM, Abrams SA, Pettifor JM. Rickets. Nat Rev Dis Primers. 2017;3:17101.

    Article  Google Scholar 

  8. Gonzalez Ballesteros LF, Ma NS, Gordon RJ, Ward L, Backeljauw P, Wasserman H, et al. Unexpected widespread hypophosphatemia and bone disease associated with elemental formula use in infants and children. Bone. 2017;97:287–92.

    Article  CAS  Google Scholar 

  9. Chalouhi C, Nicolas N, Vegas N, Matczak S, El Jurdi H, Boddaert N, et al. Scurvy: a new old cause of skeletal pain in young children. Front Pediatr. 2020;8:8.

    Article  Google Scholar 

  10. Faienza MF, Ventura A, Colucci S, Cavallo L, Grano M, Brunetti G. Bone fragility in Turner syndrome: mechanisms and prevention strategies. Front Endocrinol (Lausanne). 2016;7:34.

    Article  Google Scholar 

  11. Turner J, Pellerin G, Mager D. Prevalence of metabolic bone disease in children with celiac disease is independent of symptoms at diagnosis. J Pediatr Gastroenterol Nutr. 2009;49(5):589–93.

    Article  Google Scholar 

  12. Shaker JL, Brickner RC, Findling JW, Kelly TM, Rapp R, Rizk G, et al. Hypocalcemia and skeletal disease as presenting features of celiac disease. Arch Intern Med. 1997;157(9):1013–6.

    Article  CAS  Google Scholar 

  13. Sarinho ESC, Melo V. Glucocorticoid-induced bone disease: mechanisms and importance in pediatric practice. Rev Paul Pediatr. 2017;35(2):207–15.

    Article  Google Scholar 

  14. Lee CT, Chen HC, Lai LW, Yong KC, Lien YH. Effects of furosemide on renal calcium handling. Am J Physiol Renal Physiol. 2007;293(4):F1231–7.

    Article  CAS  Google Scholar 

  15. Barstow C, Rerucha C. Evaluation of short and tall stature in children. Am Fam Physician. 2015;92(1):43–50.

    PubMed  Google Scholar 

  16. Gilsanz V, Chalfant J, Kalkwarf H, Zemel B, Lappe J, Oberfield S, et al. Age at onset of puberty predicts bone mass in young adulthood. J Pediatr. 2011;158(1):100–5, 5 e1-2.

    Article  Google Scholar 

  17. el-Hajj Fuleihan G, Klerman EB, Brown EN, Choe Y, Brown EM, Czeisler CA. The parathyroid hormone circadian rhythm is truly endogenous--a general clinical research center study. J Clin Endocrinol Metab. 1997;82(1):281–6.

    CAS  PubMed  Google Scholar 

  18. Trivedi H, Szabo A, Zhao S, Cantor T, Raff H. Circadian variation of mineral and bone parameters in end-stage renal disease. J Nephrol. 2015;28(3):351–9.

    Article  CAS  Google Scholar 

  19. Turan S, Topcu B, Gokce I, Guran T, Atay Z, Omar A, et al. Serum alkaline phosphatase levels in healthy children and evaluation of alkaline phosphatase z-scores in different types of rickets. J Clin Res Pediatr Endocrinol. 2011;3(1):7–11.

    Article  Google Scholar 

  20. Schiele F, Henny J, Hitz J, Petitclerc C, Gueguen R, Siest G. Total bone and liver alkaline phosphatases in plasma: biological variations and reference limits. Clin Chem. 1983;29(4):634–41.

    Article  CAS  Google Scholar 

  21. Manz F, Kehrt R, Lausen B, Merkel A. Urinary calcium excretion in healthy children and adolescents. Pediatr Nephrol. 1999;13(9):894–9.

    Article  CAS  Google Scholar 

  22. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    Article  CAS  Google Scholar 

  23. Chesney RW, Zimmerman J, Hamstra A, DeLuca HF, Mazees RB. Vitamin D metabolite concentrations in vitamin D deficiency. Are calcitriol levels normal. Am J Dis Child. 1981;135(11):1025–8.

    Article  CAS  Google Scholar 

  24. Lund B, Clausen N, Lund B, Andersen E, Sorensen OH. Age-dependent variations in serum 1,25-dihydroxyvitamin D in childhood. Acta Endocrinol. 1980;94(3):426–9.

    Article  CAS  Google Scholar 

  25. Zemel BS, Stallings VA, Leonard MB, Paulhamus DR, Kecskemethy HH, Harcke HT, et al. Revised pediatric reference data for the lateral distal femur measured by Hologic Discovery/Delphi dual-energy X-ray absorptiometry. J Clin Densitom. 2009;12(2):207–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora E. Renthal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Renthal, N.E. (2021). Skeletal Disease. In: Stanley, T., Misra, M. (eds) Endocrine Conditions in Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-030-52215-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52215-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52214-8

  • Online ISBN: 978-3-030-52215-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics