Skip to main content

Design and Implementation of a Wastewater Heat Recovery System Prototype for Electric Showers in Quito-Ecuador

  • Conference paper
  • First Online:
Advances in Manufacturing, Production Management and Process Control (AHFE 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1216))

Included in the following conference series:

  • 1098 Accesses

Abstract

A wastewater heat recovery system was designed and implemented in the city of Quito - Ecuador. The prototype consists of adapting a heat exchanger to recover energy from wastewater and preheat the water that enters an electric shower. A temperature control system was designed and adapted to work based on a preset comfort temperature. A procedure for the manufacture of copper U-pipe fittings was developed for the construction of the heat exchanger coil, which consists of freezing water inside the pipe so that when rolled it avoids crushing and excessive loss of the inner diameter. Results show that for an average family of 4 members a reduction of energy consumption by 57% is possible. For the case of Ecuador, a reduction of 56.69 Mt of equivalent CO2 emissions was estimated if the system was implemented across the country. A payback period of 8.35 years was calculated for the initial investment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhushan, N., Steg, L., Albers, C.: Studying the effects of intervention programmes on household energy saving behaviours using graphical causal models. Energy Res. Soc. Sci. 45, 75–80 (2018). https://doi.org/10.1016/j.erss.2018.07.027

    Article  Google Scholar 

  2. Sun, J., Chen, D., Hu, J.: Simulation and analysis of energy consumption of the energy-saving building in Shanghai (2018). https://doi.org/10.2991/ifeesm-17.2018.76

  3. Mirrahimi, S., Mohamed, M.F., Haw, L.C., Ibrahim, N.L.N., Yusoff, W.F.M., Aflaki, A.: The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot-humid climate, (2016). https://doi.org/10.1016/j.rser.2015.09.055

  4. International Energy Agency: Key World Energy Statistics 2019 (2019)

    Google Scholar 

  5. Keinath, C.M., Garimella, S.: An energy and cost comparison of residential water heating technologies. Energy 128, 626–633 (2017). https://doi.org/10.1016/j.energy.2017.03.055

    Article  Google Scholar 

  6. Ghisi, E., Gosch, S., Lamberts, R.: Electricity end-uses in the residential sector of Brazil. Energy Policy 35, 4107–4120 (2007). https://doi.org/10.1016/j.enpol.2007.02.020

    Article  Google Scholar 

  7. Singh, H., Muetze, A., Eames, P.C.: Factors influencing the uptake of heat pump technology by the UK domestic sector. Renew. Energy. 35, 873–878 (2010). https://doi.org/10.1016/j.renene.2009.10.001

    Article  Google Scholar 

  8. Alam, F., Theos, T.: A new generation energy efficient residential house in Australia. In: 4th BSME-ASME International Conference on Thermal Engineering (2008)

    Google Scholar 

  9. Guo, X., Ma, Z., Ma, L., Zhang, J.: Experimental study on the performance of a novel in–house heat pump water heater with freezing latent heat evaporator and assisted by domestic drain water. Appl. Energy 235, 442–450 (2019). https://doi.org/10.1016/j.apenergy.2018.10.094

    Article  Google Scholar 

  10. Shen, C., Lei, Z., Lv, G., Ni, L., Deng, S.: Experimental performance evaluation of a novel anti-fouling wastewater source heat pump system with a wastewater tower. Appl. Energy 236, 690–699 (2019). https://doi.org/10.1016/j.apenergy.2018.12.033

    Article  Google Scholar 

  11. Ramadan, M., lemenand, T., Khaled, M.: Recovering heat from hot drain water—experimental evaluation, parametric analysis and new calculation procedure. Energy Build. 128, 575–582 (2016). https://doi.org/10.1016/j.enbuild.2016.07.017

  12. Guamán, J., García, M., Guevara, D., Ríos, A.: Evaluación del Impacto Económico en Diferentes Escenarios de Implementación de Tecnologías Eficientes de Calentamiento de Agua en el Ecuador. Rev. Técnica Energía 12, 270–283 (2016)

    Google Scholar 

  13. Pesántez, J.: Reducción de costos en el calentamiento de agua en Ecuador, a través de la sustitución de calefones con uso de GLP por sistemas de energía solar térmica. Rev. Científica y Tecnológica UPSE. 1 (2012). https://doi.org/10.26423/rctu.v1i1.2

  14. El Hage, H., Ramadan, M., Jaber, H., Khaled, M., Olabi, A.G.: A short review on the techniques of waste heat recovery from domestic applications. Energy Sources Part A Recover. Util. Environ. Eff. 1–16 (2019). https://doi.org/10.1080/15567036.2019.1623940

  15. Sierra, M.P.: Huella de Carbono de la Universidad San Francisco de Quito año 2017 y Plan de Mitigación de Emisiones de CO2-eq (2018). http://repositorio.usfq.edu.ec/bitstream/23000/7594/1/139732.pdf

  16. Corporación Nacional de Electricidad: Pliego Tarifario - CNEL EP. https://www.cnelep.gob.ec/pliego-tarifario-2/. Accessed 28 Jan 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byron Remache-Vinueza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Remache-Vinueza, B., Calderón, G.E., Zapata, M. (2020). Design and Implementation of a Wastewater Heat Recovery System Prototype for Electric Showers in Quito-Ecuador. In: Mrugalska, B., Trzcielinski, S., Karwowski, W., Di Nicolantonio, M., Rossi, E. (eds) Advances in Manufacturing, Production Management and Process Control. AHFE 2020. Advances in Intelligent Systems and Computing, vol 1216. Springer, Cham. https://doi.org/10.1007/978-3-030-51981-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51981-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51980-3

  • Online ISBN: 978-3-030-51981-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics