Advertisement

Influence of Two Industrial Overhead Exoskeletons on Perceived Strain – A Field Study in the Automotive Industry

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1210)

Abstract

Due to the increasing mean age of workforce across all industry sectors, work-related musculoskeletal diseases, which already have an impact on overall production capacities, are becoming more than ever the focus of attention. Strenuous postures, repetitive tasks, and heavy loads are risk factors for developing work-related diseases. Exoskeletons, which have been suggested as a preventative measure for musculoskeletal disorders, are piloted in various industrial environments. Although psychological and physiological consequences on the wearer have been increasingly investigated, the so far conducted studies mainly focused on the ergonomic evaluation in a laboratory setting. Field studies which evaluate the effects of exoskeletons under real working conditions are scarce. This paper investigates the influence of two different overhead exoskeletons on perceived strain among eight male associates on the assembly line of an automotive manufacturer. Assessment of perceived strain, body part related through Borg’s CR-10 scale combined with a modified body map and whole-body through a visual analogue scale (VAS), revealed statistically significant reductions in upper limbs, shoulders (anterior and posterior) as well as neck and spine while using the exoskeletons.

Keywords

Overhead work Shoulder injury Work-related musculoskeletal disorders Exoskeleton Perceived strain CR-10 Visual analogue scale VAS 

References

  1. 1.
    Statistical office of the European communities: Health and safety at work in Europe (1999–2007). A statistical portrait. Eurostat. Statistical books. Office for official publications of the European Union, Luxembourg (2010)Google Scholar
  2. 2.
    Bundesanstalt für arbeitsschutz und arbeitsmedizin berufskrankheiten durch mechanische einwirkungen (2017)Google Scholar
  3. 3.
    Bjelle, A., Hagberg, M., Michaelsson, G.: Clinical and ergonomic factors in prolonged shoulder pain among industrial workers. Scand. J. Work Environ. Health 5(3), 205–210 (1979).  https://doi.org/10.5271/sjweh.3094CrossRefGoogle Scholar
  4. 4.
    American Society of Biomechanics (Hrsg): EMG assessment of a shoulder support Exoskeleton during on-site job tasks (2017)Google Scholar
  5. 5.
    Bargende, M., Reuss, H.-C., Wiedemann, J. (Hrsg): 17. Internationales Stuttgarter Symposium. Automobil- und Motorentechnik. Proceedings. Springer Fachmedien Wiesbaden, Wiesbaden (2017)Google Scholar
  6. 6.
    de Looze, M.P., Bosch, T., Krause, F., Stadler, K.S., O’Sullivan, L.W.: Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 59(5), 671–681 (2016).  https://doi.org/10.1080/00140139.2015.1081988CrossRefGoogle Scholar
  7. 7.
    Weston, E.B., Alizadeh, M., Knapik, G.G., Wang, X., Marras, W.S.: Biomechanical evaluation of exoskeleton use on loading of the lumbar spine. Appl. Ergon. 68, 101–108 (2018).  https://doi.org/10.1016/j.apergo.2017.11.006CrossRefGoogle Scholar
  8. 8.
    Huysamen, K., Bosch, T., de Looze, M., Stadler, K.S., Graf, E., O’Sullivan, L.W.: Evaluation of a passive exoskeleton for static upper limb activities. Appl. Ergon. 70, 148–155 (2018).  https://doi.org/10.1016/j.apergo.2018.02.009CrossRefGoogle Scholar
  9. 9.
    Kim, S., Nussbaum, M.A., Mokhlespour Esfahani, M.I., Alemi, M.M., Alabdulkarim, S., Rashedi, E.: Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation. Part I - “Expected” effects on discomfort, shoulder muscle activity, and work task performance. Appl. Ergon. (2018).  https://doi.org/10.1016/j.apergo.2018.02.025
  10. 10.
    Kim, S., Nussbaum, M.A., Mokhlespour Esfahani, M.I., Alemi, M.M., Jia, B., Rashedi, E.: Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation. Part II - “Unexpected” effects on shoulder motion, balance, and spine loading. Appl. Ergon. (2018).  https://doi.org/10.1016/j.apergo.2018.02.024
  11. 11.
    Muramatsu, Y., Kobayashi, H., Sato, Y., Jiaou, H., Hashimoto, T., Kobayashi, H.: Quantitative performance analysis of exoskeleton augmenting devices - muscle suit - for manual worker. Int. J. Autom. Technol. 5(4), 559–567 (2011).  https://doi.org/10.20965/ijat.2011.p0559CrossRefGoogle Scholar
  12. 12.
    Ferguson, S.A., Allread, W.G., Le, P., Rose, J., Marras, W.S.: Shoulder muscle fatigue during repetitive tasks as measured by electromyography and near-infrared spectroscopy. Hum. Factors 55(6), 1077–1087 (2013).  https://doi.org/10.1177/0018720813482328CrossRefGoogle Scholar
  13. 13.
    Bier, M.: Ergonomie der Überkopfarbeit. Zugl.: Darmstadt, Techn. Hochsch., Diss. Fortschritt-Berichte VDI @Reihe 17, Bd 70. VDI Verl., Düsseldorf (1991)Google Scholar
  14. 14.
    Borg, G.: Borg’s Perceived Exertion and Pain Scales. Human Kinetics, Champaign (1998)Google Scholar
  15. 15.
    Corlett, E.N., Bishop, R.P.: A technique for assessing postural discomfort. Ergonomics 19(2), 175–182 (1976).  https://doi.org/10.1080/00140137608931530CrossRefGoogle Scholar
  16. 16.
    Kersten, P., Küçükdeveci, A.A., Tennant, A.: The use of the visual analogue scale (VAS) in rehabilitation outcomes. J. Rehabil. Med. 44(7), 609–610 (2012).  https://doi.org/10.2340/16501977-0999CrossRefGoogle Scholar
  17. 17.
    Kluth, K.: Analyse, Beurteilung und ergonomische Gestaltung von Arbeitsplätzen in Selbstbedienungsläden. Höpner und Göttert, Siegen (2001)Google Scholar
  18. 18.
    Spada, S., Ghibaudo, L., Gilotta, S., Gastaldi, L., Cavatorta, M.P.: Analysis of exoskeleton introduction in industrial reality: main issues and EAWS risk assessment. In: Proceedings of the AHFE 2017 International Conference on Physical Ergonomics and Human Factors. Springer, Heidelberg (2018)Google Scholar
  19. 19.
    Hefferle, M., Dahmen, C., Kluth, K.: Einfluss eines Exoskeletts zur Unterstützung von Überkopftätigkeiten in der Automobilindustrie auf die subjektive, körperliche Beanspruchung. Eine explorative Feldstudie. ASU - Arbeitsmedizin, Sozialmedizin, Umweltmedizin (12) (2019)Google Scholar
  20. 20.
    Hensel, R., Keil, M.: Subjektive Evaluation industrieller Exoskelette im Rahmen von Feldstudien an ausgewählten Arbeitsplätzen. Z. Arb. Wiss. 72(4), 252–263 (2018).  https://doi.org/10.1007/s41449-018-0122-yCrossRefGoogle Scholar
  21. 21.
    Kim, S., Nussbaum, M.A.: A follow-up study of the effects of an arm support exoskeleton on physical demands and task performance during simulated overhead work. IISE Trans. Occup. Ergon. Hum. Factors 1–12 (2019).  https://doi.org/10.1080/24725838.2018.1551255

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Department for Occupational Safety and ErgonomicsBMW AGMunichGermany
  2. 2.Ergonomics DivisionUniversity of SiegenSiegenGermany

Personalised recommendations