Skip to main content

Subjective and Objective Measures to Assess Postural Instability: Their Linear Correlations and Abilities to Detect Effects of Work-Related Factors

  • Conference paper
  • First Online:
  • 1205 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1215))

Abstract

The linear correlations between one subjective - perceived postural instability (PPI) and fifty-one objective postural instability measures were investigated, and their abilities in detecting the main and interaction effects of three work-related factors were compared. Results showed thirty-five objective measures had large correlations (|r| ≥ 0.5) with PPI. Center of pressure (COP) related measures had stronger abilities for detecting the factors’ effects than the other objective measures. Especially, ten of them, together with PPI, successfully detected (p < 0.05) both the main and interaction effects of all studied factors. High discriminating power, an overall high intra-class correlation coefficient and a small mean absolute difference between test-retest illustrated the PPI is reliable and sensitive for postural instability measuring. COP movement-related (velocity, acceleration, time to contact), and phase plane parameter, planar deviation in velocity, distance to the closest base of support boundary are recommended objective measures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hsiao, H., Simeonov, P.: Preventing falls from roofs: a critical review. Ergonomics 44, 537–561 (2001)

    Article  Google Scholar 

  2. Prieto, T.E., Myklebust, J.B., Myklebust, B.M.: Characterization and modeling of postural steadiness in the elderly: a review. IEEE Trans. Rehabil. Eng. 1, 26–34 (1993)

    Article  Google Scholar 

  3. Chaudhry, H., Bukiet, B., Ji, Z., Findley, T.: Measurement of balance in computer posturography: Comparison of methods—A brief review. J. Bodyw. Mov. Ther. 15, 82–91 (2011)

    Article  Google Scholar 

  4. Didomenico, A., Nussbaum, M.A.: Interactive effects of mental and postural demands on subjective assessment of mental workload and postural stability. Safety Sci. 43, 485–495 (2005)

    Article  Google Scholar 

  5. Schieppati, M., Tacchini, E., Nardone, A., Tarantola, J., Corna, S.: Subjective perception of body sway. J. Neurol. Neurosurg. Psychiatry 66, 313–322 (1999)

    Article  Google Scholar 

  6. Prieto, T.E., Myklebust, J.B., Hoffmann, R.G., Lovett, E.G., Myklebust, B.M.: Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 43, 956–966 (1996)

    Article  Google Scholar 

  7. Lin, D., Seol, H., Nussbaum, M.A., Madigan, M.L.: Reliability of COP-based postural sway measures and age-related differences. Gait Posture. 28, 337–342 (2008)

    Article  Google Scholar 

  8. Qiu, H., Xiong, S.: Center-of-pressure based postural sway measures: Reliability and ability to distinguish between age, fear of falling and fall history. Int. J. Ind. Ergon. 47, 37–44 (2015)

    Article  Google Scholar 

  9. Raymakers, J.A., Samson, M.M., Verhaar, H.J.J.: The assessment of body sway and the choice of the stability parameter(s). Gait Posture. 21, 48–58 (2005)

    Article  Google Scholar 

  10. Jebelli, H., Ahn, C.R., Stentz, T.L.: Fall risk analysis of construction workers using inertial measurement units: Validating the usefulness of the postural stability metrics in construction. Saf. Sci. 84, 161–170 (2016)

    Article  Google Scholar 

  11. Jebelli, H., Ahn, C.R., Stentz, T.L.: Comprehensive fall-risk assessment of construction workers using inertial measurement units: validation of the gait-stability metric to assess the fall risk of iron workers. J. Comput. Civ. Eng. 30, 04015034 (2016)

    Article  Google Scholar 

  12. Heebner, N.R., Akins, J.S., Lephart, S.M., Sell, T.C.: Reliability and validity of an accelerometry based measure of static and dynamic postural stability in healthy and active individuals. Gait Posture. 41, 535–539 (2015)

    Article  Google Scholar 

  13. Kaufman, K.R., Brey, R.H., Chou, L.S., Rabatin, A., Brown, A.W., Basford, J.R.: Comparison of subjective and objective measurements of balance disorders following traumatic brain injury. Med. Eng. Phys. 28, 234–239 (2006)

    Article  Google Scholar 

  14. Goldsheyder, D., Nordin, M., Weiner, S.S., Hiebert, R.: Musculoskeletal symptom survey among mason tenders. Am. J. Ind. Med. 42, 384–396 (2002)

    Article  Google Scholar 

  15. DiDomenico, A., McGorry, R.W., Huang, Y.-H., Blair, M.F.: Perceptions of postural stability after transitioning to standing among construction workers. Saf. Sci. 48, 166–172 (2010)

    Article  Google Scholar 

  16. HSE: Manual handling - Manual Handling Operations Regulations 1992 - Guidance on Regulations., London (2016)

    Google Scholar 

  17. Xsens: Xsens MVN BIOMECH, https://www.xsens.com/products/mvn-biomech/. Accessed 19 Jan 2020

  18. Clark, R.A., McGough, R., Paterson, K.: Reliability of an inexpensive and portable dynamic weight bearing asymmetry assessment system incorporating dual Nintendo Wii Balance Boards. Gait Posture. 34, 288–291 (2011)

    Article  Google Scholar 

  19. Huurnink, A., Fransz, D.P., Kingma, I., van Dieën, J.H.: Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks. J. Biomech. 46, 1392–1395 (2013)

    Article  Google Scholar 

  20. Bartlett, H.L., Ting, L.H., Bingham, J.T.: Accuracy of force and center of pressure measures of the Wii Balance Board. Gait Posture. 39, 224–228 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the KAIST Startup Fund (G04160006) and the Basic Science Research Program through the National Research Foundation of Korea (NRF2017R1C1B2006811).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangjie Guo .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 3.̄ Results summary: Results of Pearson Correlation, T-test and Analysis of variance.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, L., Kou, J., Xiong, S. (2020). Subjective and Objective Measures to Assess Postural Instability: Their Linear Correlations and Abilities to Detect Effects of Work-Related Factors. In: Karwowski, W., Goonetilleke, R., Xiong, S., Goossens, R., Murata, A. (eds) Advances in Physical, Social & Occupational Ergonomics. AHFE 2020. Advances in Intelligent Systems and Computing, vol 1215. Springer, Cham. https://doi.org/10.1007/978-3-030-51549-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51549-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51548-5

  • Online ISBN: 978-3-030-51549-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics