Skip to main content

A Genetic-Based SVM Approach for Quality Data Classification

  • Conference paper
  • First Online:
Artificial Intelligence and Industrial Applications (A2IA 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1193))

Abstract

With the emergence of the Industry 4.0 and the big data era, many organizations had recourse to data-based approaches for Quality management. One of the main aims of the data-based approaches in manufacturing industries is quality classification. Classification methods provide many solutions related to quality problems such a defect detection and conformity prediction. In that context, this paper identifies a suitable technique (Support Vector Machine) for quality data classification, as it proposes an appropriate approach to optimize its performances. The proposed approach is tested on a chemical manufacturing dataset and a rolling process dataset, in order to evaluate its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcácer, V., Cruz-Machado, V.: Scanning the Industry 4.0: a literature review on technologies for manufacturing systems. Eng. Sci. Technol. Int. J. 22(3), 899‑919 (2019). https://doi.org/10.1016/j.jestch.2019.01.006

  2. Rostami, H., Dantan, J.-Y., Homri, L.: Review of data mining applications for quality assessment in manufacturing industry: support vector machines. Int. J. Metrol. Qual. Eng. 6(4), 401 (2015). https://doi.org/10.1051/ijmqe/2015023

  3. Köksal, G., Batmaz, İ., Testik, M.C.: A review of data mining applications for quality improvement in manufacturing industry. Expert. Syst. Appl. 38(10), 13448–13467 (2011). https://doi.org/10.1016/j.eswa.2011.04.063

  4. Attar, M.E., Hamery, X.: Industrial expert system acquired by machine learning. Appl. Artif. Intell. 8(4), 497–542 (1994). https://doi.org/10.1051/ijmqe/201502310.1080/08839519408945457

  5. Siltepavet, A., Sinthupinyo, S., Chongstitvatana, P.: Improving quality of products in hard drive manufacturing by decision tree technique. J. Comput. Sci. Issues 9(3), 7 (2012)

    Google Scholar 

  6. Adidela, D.R.: Construction of fuzzy decision tree using expectation maximization algorithm. J. Comput. Sci. Manag. Res. 1(3), 9 (2012)

    Google Scholar 

  7. Wray, B.A., Rakes, T.R., Rees, L.P.: Neural network identification of critical factors in a dynamic just-in-time kanban environment. J. Intell. Manufact. 8(2), 83–96 (1997). https://doi.org/10.1023/A:1018548519287

  8. Markham, I.S., Mathieu, R.G., Wray, B.A.: A rule induction approach for determining the number of kanbans in a just-in-time production system. Comput. Ind. Eng. 34(4), 717–727 (1998). 10.1016/S0360–8352(98)00099-0

    Google Scholar 

  9. (Tony) Hou, T.-H., Liu, W.-L., Lin, L.: Intelligent remote monitoring and diagnosis of manufacturing processes using an integrated approach of neural networks and rough sets. J. Intell. Manufact. 14(2), 239–253 (2003).https://doi.org/10.1023/A:1022911715996

  10. Cho, H. S., Leu, M.C.: Artificial neural networks in manufacturing processes: monitoring and control. IFAC Proc. Vol. 31(15), 529–537 (1998). https://doi.org/10.1016/S1474-6670(17)40607-0

  11. Zahran, B.M.: Using neural networks to predict the hardness of aluminum alloys. Eng. Technol. Appl. Sci. Res. 5(1), 4 (2015)

    Article  Google Scholar 

  12. Pouraliakbar, H., Khalaj, M., Nazerfakhari, M., Khalaj, G.: Artificial neural networks for hardness prediction of HAZ with chemical composition and tensile test of X70 pipeline steels. J. Iron Steel Res. Int. 22(5), 446–450 (2015). 10.1016/S1006-706X(15)30025-X

    Google Scholar 

  13. Noyel, M., Thomas, P., Charpentier, P., Thomas, A., Beauprêtre, B.: Improving production process performance thanks to neuronal analysis. IFAC Proc. Vol. 46(7), 432–437 (2013). https://doi.org/10.3182/20130522-3-BR-4036.00055

  14. Bahlmann, C., Heidemann, G., Ritter, H.: Artificial neural networks for automated quality control of textile seams. Pattern Recognit. 32(6), 1049–1060 (1999). https://doi.org/10.1016/S0031-3203(98)00128-9

  15. Gryllias, K.C., Antoniadis, I.A.: A Support Vector Machine approach based on physical model training for rolling element bearing fault detection in industrial environments. Eng. Appl. Artif. Intell. 25(2), 326–344 (2012). https://doi.org/10.1016/j.engappai.2011.09.010

  16. Fernández-Francos, D., Martínez-Rego, D., Fontenla-Romero, O., Alonso-Betanzos, A.: Automatic bearing fault diagnosis based on one-class ν-SVM. Comput. Ind. Eng. 64(1), 357–365 (2013). https://doi.org/10.1016/j.cie.2012.10.013

  17. Xanthopoulos, P., Razzaghi, T.: A weighted support vector machine method for control chart pattern recognition. Comput. Ind. Eng. 70, 134–149 (2014). https://doi.org/10.1016/j.cie.2014.01.014

  18. Diao, G., Zhao, L., Yao, Y.: A dynamic quality control approach by improving dominant factors based on improved principal component analysis. Int. J. Prod. Res. 53(14), 4287–4303 (2015). https://doi.org/10.1080/00207543.2014.997400

  19. Baccarini, L.M.R., Rocha, V.V., Silva, de Menezes, B.R., Caminhas, W.M.: SVM practical industrial application for mechanical faults diagnostic. Expert Syst. Appl. 38(6), 6980–6984 (2011). https://doi.org/10.1016/j.eswa.2010.12.017

  20. Jegadeeshwaran, R., Sugumaran, V.: Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines. Mech. Syst. Signal Process. 52–53, 436–446 (2015). https://doi.org/10.1016/j.ymssp.2014.08.007

  21. Lessmann, S., Stahlbock, R., Crone, S.F.: Optimizing Hyperparameters of Support Vector Machines by Genetic Algorithms, p. 7

    Google Scholar 

  22. Bäck, T., Schwefel, H.-P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993). https://doi.org/10.1162/evco.1993.1.1.1

  23. Chou, J.-S., Cheng, M.-Y., Wu, Y.-W., Pham, A.-D.: Optimizing parameters of support vector machine using fast messy genetic algorithm for dispute classification. Expert Syst. Appl. 41(8), 3955–3964 (2014). https://doi.org/10.1016/j.eswa.2013.12.035

  24. Lin, S.-W., Ying, K.-C., Chen, S.-C., Lee, Z.-J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35(4), 1817–1824 (2008). https://doi.org/10.1016/j.eswa.2007.08.088

  25. Yang, D., Liu, Y., Li, S., Li, X., Ma, L.: Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm. Mech. Mach. Theory 90, 219–229 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.03.013

  26. Olatomiwa, L., Mekhilef, S., Shamshirband, S., Mohammadi, K., Petković, D., Sudheer, C.: A support vector machine–firefly algorithm-based model for global solar radiation prediction. Solar Energy 115, 632–644 (2015). https://doi.org/10.1016/j.solener.2015.03.015

  27. Baker, B.M., Ayechew, M.A.: A genetic algorithm for the vehicle routing problem. Comput. Oper. Res. 30(5), 787–800 (2003). 10.1016/S0305–0548(02)00051–5

    Google Scholar 

  28. Jebari, K., Madiafi, M.: Selection methods for genetic algorithms. Int. J. Emer. Sci. 3(4) (2013)

    Google Scholar 

  29. Fang, Y., Li, J.: A review of tournament selection in genetic programming. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds.) Advances in Computation and Intelligence, vol. 6382, pp. 181–192. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  30. Walchand College of Engineering, U. A.J., S. P.D., Government College of Engineering, Karad.: Crossover operators in genetic algorithms: a review. IJSC 06(01), 1083–1092 (2015). https://doi.org/10.21917/ijsc.2015.0150

  31. Angelova, M., Pencheva, T.: Tuning genetic algorithm parameters to improve convergence time. Int. J. Chem. Eng. 2011, 1–7 (2011). https://doi.org/10.1155/2011/646917

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wahb Zouhri .

Editor information

Editors and Affiliations

Appendix

Appendix

See Tables 4, 5 and 6.

Table 4 Optimal sigmoid and polynomial kernel functions
Table 5 Average fitness of every generation—Chemical Data
Table 6 Average fitness of every generation—Rolling Data

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zouhri, W., Rostami, H., Homri, L., Dantan, JY. (2021). A Genetic-Based SVM Approach for Quality Data Classification. In: Masrour, T., Cherrafi, A., El Hassani, I. (eds) Artificial Intelligence and Industrial Applications. A2IA 2020. Advances in Intelligent Systems and Computing, vol 1193. Springer, Cham. https://doi.org/10.1007/978-3-030-51186-9_2

Download citation

Publish with us

Policies and ethics