Advertisement

Visualizing Quantitative Uncertainty: A Review of Common Approaches, Current Limitations, and Use Cases

Conference paper
  • 518 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1206)

Abstract

Understanding quantified uncertainty through efficient visualization techniques is becoming increasingly important for the successful teaming of human and intelligent agents across many domains. For humans to make effective, well-informed decisions, visualizations must maximize the amount of critical information communicated in a way that complexity is not prohibitive of fast and accurate understanding. In this review, we first identify common approaches to uncertainty in multiple domains, including traditional graphical methods in the 1D and 2D Data Dimensions, and survey their techniques. We then analyze current challenges in the uncertainty visualization space pertaining to information complexity, presentation, added dimensionality, visual dominance, and multidisciplinary needs. Finally, we review the growing number of applications and the current state of uncertainty visualization, addressing the benefits from knowing uncertainty in each example and identifying the windows of opportunity in the future context of multi-domain use cases.

Keywords

Uncertainty Visualization Decision-making Training 

References

  1. 1.
    Boone, A.P., Gunalp, P., Hegarty, M.: Explicit versus actionable knowledge: the influence of explaining graphical conventions on interpretation of hurricane forecast visualizations. J. Exp. Psychol. Appl. 24(3), 275–295 (2018).  https://doi.org/10.1037/xap0000166CrossRefGoogle Scholar
  2. 2.
    Cheong, L., Bleisch, S., Kealy, A., Tolhurst, K., Wilkening, T., Duckham, M.: Evaluating the impact of visualization of wildfire hazard upon decision making under uncertainty. Int. J. Geogr. Inf. Sci. 30(7), 1377–1404 (2016)CrossRefGoogle Scholar
  3. 3.
    Cokely, E.T., Galesic, M., Schulz, E., Ghazal, S., Garcia-Retamero, R.: Measuring risk literacy: the Berlin numeracy test. Judgm. Decis. Mak. 7(1), 25 (2012)Google Scholar
  4. 4.
    Davis, T.J., Keller, C.P.: Modelling and visualizing multiple spatial uncertainties. Comput. Geosci. 23(4), 397–408 (1997)CrossRefGoogle Scholar
  5. 5.
    DeCostanza, A.H., Marathe, A.R., Bohannon, A., Evans, A.W., Palazzolo, E.T., Metcalfe, J.S., McDowell, K.: Enhancing HumanAgent Teaming with Individualized, Adaptive technologies: A Discussion of Critical Scientific Questions. US Army Research Laboratory Aberdeen Proving Grounds United states (2018)Google Scholar
  6. 6.
    Djurcilov, S., Kim, K., Lermusiaux, P.F., Pang, A.: Volume rendering data with uncertainty information. In: Data Visualization, pp. 243–252. Springer, Vienna (2001).  https://doi.org/10.1016/S0097-8493(02)00055-9
  7. 7.
    Galesic, M., Garcia-Retamero, R.: Graph literacy: a cross-cultural comparison. Med. Decis. Making 31(3), 444–457 (2011).  https://doi.org/10.1177/0272989X10373805CrossRefGoogle Scholar
  8. 8.
    Hegarty, M., Canham, M.S., Fabrikant, S.I.: Thinking about the weather: how display salience and knowledge affect performance in a graphic inference task. J. Exp. Psychol. Learn. Mem. Cogn. 36(1), 37 (2010)CrossRefGoogle Scholar
  9. 9.
    Hengl, T.: Visualisation of uncertainty using the HSI colour model: computations with colours (2003)Google Scholar
  10. 10.
    Hoekstra, R., Morey, R.D., Rouder, J.N., Wagenmakers, E.-J.: Robust misinterpretation of confidence intervals. Psychon. Bull. Rev. 21(5), 1157–1164 (2014).  https://doi.org/10.3758/s13423-013-0572-3CrossRefGoogle Scholar
  11. 11.
    Kirschenbaum, S.S., Trafton, J.G., Schunn, C.D., Trickett, S.B.: Visualizing uncertainty: the impact on performance. Hum. Factors (2013).  https://doi.org/10.1177/0018720813498093CrossRefGoogle Scholar
  12. 12.
    MacEachren, A.M., Robinson, A., Hopper, S., Gardner, S., Murray, R., Gahegan, M., Hetzler, E.: Visualizing geospatial information uncertainty: what we know and what we need to know. Cartogr. Geogr. Inf. Sci. 32, 139–160 (2005)CrossRefGoogle Scholar
  13. 13.
    Padilla, L.M., Creem-Regehr, S.H., Hegarty, M., Stefanucci, J.K.: Decision making with visualizations: a cognitive framework across disciplines. Cogn. Res.: Princ. Implic. 3(1), 29 (2018).  https://doi.org/10.1186/s41235-018-0120-9CrossRefGoogle Scholar
  14. 14.
    Shattuck, L.G., Miller, N.L., Kemmerer, K.E.: Tactical decision making under conditions of uncertainty: an empirical study. In: Human Factors and Ergonomics Society Annual Meeting Proceedings, vol. 53, pp. 242–246 (2009).  https://doi.org/10.1518/107118109X12524441080308
  15. 15.
    Shen, M., Carswell, M., Santhanam, R., Bailey, K.: Emergency management information systems: could decision makers be supported in choosing display formats? Decis. Support Syst. 52(2), 318–330 (2012).  https://doi.org/10.1016/j.dss.2011.08.008CrossRefGoogle Scholar
  16. 16.
    Sinatra, A.M., Pollard, K., Oiknine, A., Patton, D., Ericson, M., Moss, J., Dalangin, B.: The impact of immersion level and virtual reality experience on outcomes from navigating in a virtual environment (2020, manuscript submitted for publication)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.US Army Research LaboratoryLos AngelesUSA
  2. 2.DCS CorporationLos AngelesUSA
  3. 3.Psychological and Brain SciencesUniversity of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations