Advertisement

Hidden Markov Models for Visual Processing of Marketing Leaflets

Conference paper
  • 516 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1206)

Abstract

The study shows the application of hidden Markov models (HMMs) for the analysis of eye ball movement fixations. The registered visual activity concerns pairwise comparisons of simple advertisement leaflets, differed in their layout orientation and captions’ styles. A simulation experiment was conducted to specify the most appropriate HMMs in terms of information criteria. Six best models were discussed in detail. The identified hidden states together with transition and emission probabilities were the basis of subjects’ visual behavior hypothetical interpretations.

Keywords

Eye tracking Cognitive modeling Visual presentation Digital signage Advertisement Human factors Ergonomics 

Notes

Acknowledgments

The research was partially financially supported by Polish National Science Centre Grant No. 2017/27/B/HS4/01876. The experiment was conducted with an eye-tracking system made available by the Laboratory of Information Systems Quality of Use which is a part of a BIBLIOTECH project co-funded by the European Union through the European Regional Development Fund under the Operational Programme Innovative Economy 2007–2013.

References

  1. 1.
    Akaike, H.: Information theory as an extension of the maximum likelihood theory. In: Petrov, B.N., Csaki, F. (eds.) Second International Symposium on Information Theory, pp. 267–281. Akademiai Kiado, Budapest (1973)Google Scholar
  2. 2.
    Baum, L.E.: An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. In: Shisha, O. (ed.) Proceedings of the 3rd Symposium on Inequalities, pp. 1–8. University of California, Los Angeles (1972)Google Scholar
  3. 3.
    Djamasbi, S., Siegel, M., Tullis, T.: Generation Y, web design, and eye tracking. Int. J. Hum. Comput. Stud. 68(5), 307–323 (2010)CrossRefGoogle Scholar
  4. 4.
    Findlay, J.M., Gilchrist, I.D.: Active Vision. The Psychology of Looking and Seeing. Oxford University Press, New York (2003)CrossRefGoogle Scholar
  5. 5.
    Grobelny, J., Michalski, R.: Applying hidden Markov models to visual activity analysis for simple digital control panel operations. In: Proceedings of 37th International Conference on Information Systems Architecture and Technology. ISAT 2016. Part III. Advances in Intelligent Systems on Computing, vol. 523 (2017).  https://doi.org/10.1007/978-3-319-46589-0_1
  6. 6.
    Grobelny, J., Michalski, R.: Zastosowanie modeli Markowa z ukrytymi stanami do analizy aktywności wzrokowej w procesie oceny wirtualnych opakowań techniką porównywania parami. Zeszyty Naukowe Politechniki Poznańskiej. Organizacja i Zarządzanie 73, 111–125 (2017).  https://doi.org/10.21008/j.0239-9415.2017.073.08
  7. 7.
    Huddleston, P.T., Behe, B.K., Driesener, C., Minahan, S.: Inside-outside: using eye-tracking to investigate search-choice processes in the retail environment. J. Retail. Consum. Serv. 43, 85–93 (2018)CrossRefGoogle Scholar
  8. 8.
    Markov, A.A.: An example of statistical investigation of the text Eugene Onegin concerning the connection of samples in chains. Bull. Imperial Acad. Sci. St. Petersburg 7(3), 153–162 (1913). (in Russian)Google Scholar
  9. 9.
    Michalski, R.: Information presentation compatibility in a simple digital control panel design: eye-tracking study. Int. J. Occup. Saf. Ergon. 24(3), 395–405 (2018).  https://doi.org/10.1080/10803548.2017.1317469MathSciNetCrossRefGoogle Scholar
  10. 10.
    Michalski, R., Grobelny, J.: An eye tracking based examination of visual attention during pairwise comparisons of a digital product’s package. In: UAHCI 2016. Part I. LNCS, vol. 9737, pp. 430–441 (2016).  https://doi.org/10.1007/978-3-319-40250-5_41
  11. 11.
    Michalski, R., Biazik, A.: Okulograficzne badanie preferencji w stosunku do prostego przekazu marketingowego - rola orientacji ulotki i wyróżnienia czcionki. Zeszyty Naukowe Politechniki Poznańskiej. Organizacja i Zarządzanie (2020). http://www.zeszyty.fem.put.poznan.pl/
  12. 12.
    Murphy, K.: Hidden Markov Model (HMM) Toolbox for Matlab (2005). www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
  13. 13.
    Ozkan, F., Ulutas, H.B.: Using eye-tracking data to evaluate medicine information leaflets on-screen. J. Math. Stat. Sci. 3(12), 364–376 (2017)Google Scholar
  14. 14.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  15. 15.
    Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ulutas, B.H., Ozkan, N.F., Michalski, R.: Application of hidden Markov models to eye tracking data analysis of visual quality inspection operations. Central Eur. J. Oper. Res. (2019). http://dx.doi.org/10.1007/s10100-019-00628-x

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Faculty of Computer Science and ManagementWrocław University of Science and TechnologyWrocławPoland

Personalised recommendations